Skip to main content

Mitochondrion: Key Factors in Acute Heart Failure

  • Chapter
  • 2420 Accesses

Abstract

Mitochondria are largely abundant in the myocardium, not only because they provide the large part of energy in an organ that consumes a lot of adenosine triphosphate (ATP) for its mechanical activity and its cellular processes, but also because mitochondria play a potent role in cardiac homeostasis. Acute heart failure (AHF), defined as a reversible incapacity of the myocardium to provide a sufficient output for cellular metabolism of all the organs, is very common. Mechanisms leading to AHF have been largely investigated. Because the mitochondrial functional state is able to modulate force development and then pump function [1], impairment in cardiac contractile functions, as seen in AHF, may be the consequence of alterations in mitochondria function and metabolism. The role of mitochondria in AHF has been largely studied after ischemia-reperfusion injury and in septic shock. Besides these two situations, evidence of the role of mitochondria in AHF comes also from carbon monoxide (CO) poisoning where swollen mitochondria with rupture of mitochondrial cristae were described [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaasik A, Joubert F, Ventura-Clapier R, et al. A novel mechanism of regulation of cardiac contractility by mitochondrial functional state. FASEB J 2004;18:1219–27.

    Article  CAS  PubMed  Google Scholar 

  2. Tritapepe L, Macchiarelli G, Rocco M, et al. Functional and ultrastructural evidence of myocardial stunning after acute carbon monoxide poisoning. Crit Care Med 1998;26:797–801.

    Article  CAS  PubMed  Google Scholar 

  3. McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 1990;70:391–425.

    CAS  PubMed  Google Scholar 

  4. Territo PR, French SA, Dunleavy MC, et al. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering. J Biol Chem 2001;276:2586–99.

    Article  CAS  PubMed  Google Scholar 

  5. Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 1999;79:1127–55.

    CAS  PubMed  Google Scholar 

  6. Juhaszova M, Zorov DB, Kim SH, et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004;113:1535–49.

    CAS  PubMed  Google Scholar 

  7. Starling RC, Hammer DF, Altschuld RA. Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem 1998;180:171–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kübler W, Mäurer W, Dietz R, et al. Metabolic aspects of compensatory mechanisms in cardiac failure. In: Gross F, ed. Modulation of Sympathetic Tone in the Treatment of Cardiovascular Disease. Hans Huber Publishers, Bern, Vienna, Stuttgart, 1979:197–77.

    Google Scholar 

  9. Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)PSLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 2002;40:1267–1274.

    Article  CAS  PubMed  Google Scholar 

  10. Kapelo V, Kuproyanov V, Novikova N, et al. The cardiac contractile failure induced by chronic creatine and phosphocreatine deficiency. J Mol Cell Cardiol 1988;20:465–79.

    Article  Google Scholar 

  11. Ellis S, Henschke C, Sandor T, et al. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1983;1:1047–55.

    CAS  PubMed  Google Scholar 

  12. Reimer K, Hill M, Jennings R. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotide following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 1981;13:229–39.

    Article  CAS  PubMed  Google Scholar 

  13. Vogt AM, Kubler W. Heart failure: is there an energy deficit contributing to contractile dysfunction? Basic Res Cardiol 1998;93:1–10.

    Article  CAS  PubMed  Google Scholar 

  14. Cowley RA, Mergner WJ, Fisher RS, et al. The sub-cellular pathology of shock in trauma patients: studies using the immediate autopsy. Am Surg 1979;45:255–69.

    CAS  PubMed  Google Scholar 

  15. Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 2002;360:219–23.

    Article  CAS  PubMed  Google Scholar 

  16. Sabbah HN, Sharov V, Riddle JM, et al. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1992;24:1333–47.

    Article  CAS  PubMed  Google Scholar 

  17. Richter C, Gogvadze V, Laffranchi R, et al. Oxidants in mitochondria: from physiology to disease. Biochim Biophys Acta 1995;1271:67–74.

    PubMed  Google Scholar 

  18. Zell R, Geck P, Werdan K, et al. TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem 1997;177:61–7.

    Article  CAS  PubMed  Google Scholar 

  19. Gellerich FN, Trumbeckaite S, Hertel K, et al. Impaired energy metabolism in hearts of septic baboons: diminished activities of complex I and complex II of the mitochondrial respiratory chain. Shock 1999;11:336–41.

    Article  CAS  PubMed  Google Scholar 

  20. Ingwall JS. Is cardiac failure a consequence of decreased energy reserved? Circulation 1993;67:VII58–VII62.

    Google Scholar 

  21. Liao RL, Nascinben L, Friedrich J, et al. Decreased energy reserve in animal model of dilated cardiomyopathy-relationship to contractile performance. Circ Res 1996;78:893–902.

    CAS  PubMed  Google Scholar 

  22. Nayler WG, Yepez CE, Poole-Wilson PA. The effect of beta-adrenoceptor and Ca2+ antagonist drugs on the hypoxia-induced increased in resting tension. Cardiovasc Res 1978;12:666–74.

    Article  CAS  PubMed  Google Scholar 

  23. De Bruyne B, Bronzwaer JG, Heyndrickx GR, et al. Comparative effects of ischemia and hypoxemia on left ventricular systolic and diastolic function in humans. Circulation 1993;88:461–71.

    PubMed  Google Scholar 

  24. Tian R, Christe ME, Spindler M, et al. Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart. J Clin Invest 1997;99:745–51.

    Article  CAS  PubMed  Google Scholar 

  25. Tian R, Nascimben L, Ingwall JS, et al. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 1997;96:1313–19.

    CAS  PubMed  Google Scholar 

  26. Tian R, Christie ME, Spindler M, et al. Role of MgADP in the development of diastolic dysfunction in the intact beating heart. J Clin Invest 1997;99:745–51.

    Article  CAS  PubMed  Google Scholar 

  27. Tavernier B, Mebazaa A, Mateo P, et al. Phosphorylation-dependent alteration in myofilament Ca2+ sensitivity but normal mitochondrial function in septic heart. Am J Respir Crit Care Med 2001;163:362–7.

    CAS  PubMed  Google Scholar 

  28. Ventura-Clapier R, Kuznetsov A, Veksler V, et al. Functional coupling of creatine kinases in muscles: species and tissue specificity. Mol Cell Biochem 1998;184:231–47.

    Article  CAS  PubMed  Google Scholar 

  29. Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 2005;115:500–8.

    CAS  PubMed  Google Scholar 

  30. Ferrari R, Alfieri O, Curello S, et al. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 1990;81:201–11.

    CAS  PubMed  Google Scholar 

  31. Melov S, Coskun P, Patel M, et al. Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 1999;96:846–51.

    Article  CAS  PubMed  Google Scholar 

  32. Szabo C, O’Connor M, Salzman AL: Endogenously produced peroxynitrite induces the oxidation of mitochondrial and nuclear proteins in immunostimulated macrophages. FEBS Lett 1997 409:147–50.

    Article  CAS  PubMed  Google Scholar 

  33. Kroener G, Petit P, Zamzami N, et al. The biochemistry of programmed cell death. FASEB J 1995;9:1277–87.

    Google Scholar 

  34. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunology Today 1994;15:7–10.

    Article  CAS  PubMed  Google Scholar 

  35. Zorov DB, Filburn CR, Klotz LO, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000;192:1001–14.

    Article  CAS  PubMed  Google Scholar 

  36. Gradinak S, Coleman GM, Taegtmeyer H, et al. Improved cardiac function with glucose-insulin-potassium after coronary bypass surgery. Ann Thorac Surg 1989;48:484–9.

    Article  Google Scholar 

  37. Taegtmeyer H. Metabolic support for the postischemic heart. Lancet 1995;345:1552–5.

    Article  Google Scholar 

  38. Oliver MF, Opie LH. Effects of glucose and fatty acids on myocardial ischemia and arrhythmias. Lancet 1994;343:155–8.

    Article  CAS  PubMed  Google Scholar 

  39. Rau EE, Shine KI, Gervais A, et al. Enhanced mechanical recovery of anoxic and ischemic myocardium by amino acid perfusion. Am J Physiol 1979;236:H873–9.

    CAS  PubMed  Google Scholar 

  40. Pisarenko OI, Solomatina ES, Studneva JM, et al. Protective effect of glutamic acid on cardiac function and metabolism during cardioplegia and reperfusion. Basic Res Cardiol 1983;78:534–43.

    Article  CAS  PubMed  Google Scholar 

  41. Kjellman U, Bjork K, Ekroth R. Alpha-ketoglutarate for myocardial protection in heart surgery. Lancet 1995;345:552–3.

    Article  CAS  PubMed  Google Scholar 

  42. Svedjeholm R, Huljebrant I, Hakanson E, et al. Glutamate and high-dose glucose-insulin-potassium in the treatment of severe cardiac failure after cardiac operations. Ann Thorac Surg 1995;59:523–30.

    Google Scholar 

  43. Beyersdorf F, Kirsh M, Buckberg GD, et al. Warm glutamate/aspartate-enriched blood cardioplegic solution for perioperative sudden death. J Thorac Cardiovasc Surg 1992;104:1141–7.

    CAS  PubMed  Google Scholar 

  44. Pisarenko OI, Solomatina ES, Ivanov VE, et al. On the mechanism of enhanced ATP formation in hypoxic myocardium caused by glutamic acid. Basic Res Cardiol 1985;80:126–34.

    Article  CAS  PubMed  Google Scholar 

  45. Bünger R, Mallet RT, Hartman DA. Pyruvateenhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Eur J Biochem 1988;180:221–33.

    Article  Google Scholar 

  46. Scholz TD, Laughlin MR, Balaban RS, et al. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Am J Physiol 1995;268:H82–91.

    CAS  PubMed  Google Scholar 

  47. Laughlin MR, Heineman FW. The relationship between phosphorylation potential and redox state in the isolated working rat heart. J Mol Cell Cardiol 1994;26:1525–31.

    Article  CAS  PubMed  Google Scholar 

  48. Deboer LWV, Bekx PA, Han L, et al. Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation. Am J Physiol (Heart Circ Physiol) 1993;265:H1571–6.

    CAS  Google Scholar 

  49. Bassenge E, Sommer O, Schwemmer M, et al. Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol (Heart Circ Physiol) 2000;279:H2431–8.

    CAS  Google Scholar 

  50. Tejero-Taldo MI, Caffrey JL, Sun J, Mallet RT. Antioxidant properties of pyruvate mediate its potentiation of β-adrenergic inotropism in stunned myocardium. J Mol Cell Cardiol 1999;31:1863–72.

    Article  CAS  PubMed  Google Scholar 

  51. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  52. Taniguchi M, Wilson C, Hunter CA, et al. Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak. Am J Phys Heart Circ Phys 2001;280:H1762–9.

    CAS  Google Scholar 

  53. Kline JA, Maiorano PC, Schroeder JD, et al. Activation of pyruvate dehydrogenase improves heart function and metabolism after hemorrhagic shock. J Mol Cell Cardiol 1997;29:2465–74.

    Article  CAS  PubMed  Google Scholar 

  54. Burns AH, Summer WR, Burns LA, et al. Inotropic interactions of dichloroacetate with amrinone and ouabain in isolated hearts from endotoxin-shocked rats. J Cardiovasc Pharmacol 1988;11:379–86.

    Article  CAS  PubMed  Google Scholar 

  55. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomized trial. Lancet 2001;357:1385–90.

    Article  CAS  PubMed  Google Scholar 

  56. Lopaschuk GD, Barr R, Thomas PD, et al. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ Res 2003;93:e33–7.

    Article  CAS  PubMed  Google Scholar 

  57. Chandler MP, Stanley WC, Morita H, et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 2002;91:278–80.

    Article  CAS  PubMed  Google Scholar 

  58. Garlid KD, Dos Santos P, Xie ZJ, et al. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta 2003;1606:1–21.

    Article  CAS  PubMed  Google Scholar 

  59. Khaliulin I, Schwalb H, Wang P, et al. Preconditioning improves postischemic mitochondrial function and diminishes oxidation of mitochondrial proteins. Free Radic Biol Med 2004;37:1–9.

    Article  CAS  PubMed  Google Scholar 

  60. Szabo C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 1998;19:287–98.

    Article  CAS  PubMed  Google Scholar 

  61. Virag L, Szabo C. The therapeutic potential of poly(ADPribose) polymerase inhibitors. Pharmacol Rev 2002;54:375–429.

    Article  CAS  PubMed  Google Scholar 

  62. Virag L, Marmer DJ, Szabo C. Crucial role of apopain in the peroxynitrite-induced apoptotic DNA fragmentation. Free Radic Biol Med 1998;25:1075–82.

    Article  CAS  PubMed  Google Scholar 

  63. Zingarelli B, Cuzzocrea S, Zsengeller Z, et al. Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc Res 1997;36:205–15.

    Article  CAS  PubMed  Google Scholar 

  64. Nevière R, Fauvel H, Chopin C, et al. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med 2001;163:218–25.

    PubMed  Google Scholar 

  65. Fauvel H, Marchetti P, Chopin C, et al. Differential effects of caspase inhibitors on endotoxin-induced myocardial dysfunction and heart apoptosis. Am J Physiol Heart Circ Physiol 2001;280:H1608–14.

    CAS  PubMed  Google Scholar 

  66. Masters TN, Fokin AA, Schaper J, et al. Extending myocardial preservation with cyclosporin A treatment. J Heart Lung Transplant 2001;20:182.

    Article  PubMed  Google Scholar 

  67. Hsiang-Wen Chen, Chin Hsu, Tzong-Shi Lu, et al. Heat shock pretreatment prevents cardiac mitochondrial dysfunction during sepsis. Shock 2003;20:274–9.

    Article  Google Scholar 

  68. Jacquier-Sarlin MR, Fuller K, Dinh-Xuan A, et al. Protective effects of Hsp70 in inflammation. Experientia 1994;50:1031–8.

    Article  CAS  PubMed  Google Scholar 

  69. Bornman L, Steinmann CM, Gericke GS, et al. In vivo heat shock protects rat myocardial mitochondria. Biochem Biophys Res Commun 1998;246:836–40.

    Article  CAS  PubMed  Google Scholar 

  70. Polla BS, Stubbe H, Kantengwa S, et al. Differential induction of stress proteins and functional effects of heat shock in human phagocytes. Inflammation 1995;19:363–78.

    Article  CAS  PubMed  Google Scholar 

  71. Garrido C, Bruey JM, Fromentin, A, et al. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 1999;13:2061–70.

    CAS  PubMed  Google Scholar 

  72. Mosser DD, Caron AW, Bourget L, et al. The chaperone function of Hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 2000;20:7146–59.

    Article  CAS  PubMed  Google Scholar 

  73. Gabai VL, Mabuchi K, Mosser DD et al. Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 2002;22:3415–24.

    Article  CAS  PubMed  Google Scholar 

  74. Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the apaf-1 apoptosome. Nat Cell Biol 2000;2:469–75.

    Article  CAS  PubMed  Google Scholar 

  75. Schulze K, Witzenbichler B, Christmann C, et al. Disturbance of myocardial energy metabolism in experimental virus myocarditis by antibodies against the adenine nucleotide translocator. Cardiovasc Res 1999;44:91–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rabuel, C. (2008). Mitochondrion: Key Factors in Acute Heart Failure. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_13

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics