Skip to main content

Endocrine Disruptors and Puberty Disorders from Mice to Men (and Women)

  • Chapter
  • First Online:
Endocrine Disruptors and Puberty

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Puberty disturbances are a serious global issue, which is nested in the worldwide trend of earlier pubertal onset in females. The putative role of endocrine disrupters (ED) has been investigated mainly concerning peripheral precocious puberty in females; however, some data suggests that also male gynecomastia, female central precocious puberty, and delayed puberty should deserve attention. Epidemiological studies on ED support the involvement of specific widespread pollutants in either precocious [phthalates, dichlorodiphenyltrichloroethane (DDT)] or delayed [polychlorinated biphenyls (PCBs), lead] puberty; more recent evidence points out also dietary agents (mycotoxins, phytoestrogens). Further human studies should focus about multiple exposures and possible additive effects, as well as on other factors that may interact with or potentiate ED action, such as lifestyle, body composition, nutrient intake, and ethnicity. Toxicological studies are essential to respond to such research needs as etiologic research on environmentally relevant ED levels and different effects at critical developmental windows. Nevertheless, current toxicological studies lack a robust database to define an array of endpoints associated with specific outcomes and modes of action; moreover, a reliable in vitro test or battery does not exist to screen chemicals potentially affecting puberty. The two experimental schemes adopted till now include: a “programming” scheme, where exposure is mediated by the dam, either in utero or during lactation, and a “direct exposure” scheme, dealing with weaned, immature animals. The two schemes are not mutually exclusive as they represent different susceptibility windows. Some established modes of action may be already associated with outcomes, e.g., ED with estrogenic effects tend to delay male and accelerate female puberty, with long-term histological effects in target tissues. Nevertheless, the spectrum of ED modes of action is going to include new mechanisms and targets, such as kisspeptins and N-methyl-d-aspartate receptors. Whereas for some chemicals the available data might be sufficient to trigger precautionary measures, a sound risk analysis needs an interdisciplinary integration between human medicine and experimental toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Euling SY, Selevan SG, Pescovitz OH, Skakkebaek NE. Role of environmental factors in the timing of puberty. Pediatrics. 2008;121(Suppl 3):S167–71.

    Article  PubMed  Google Scholar 

  2. Cesario SK, Hughes LA. Precocious puberty: a comprehensive review of literature. J Obstet Gynecol Neonatal Nurs. 2007;36:263–74.

    Article  PubMed  Google Scholar 

  3. Codner E, Román R. Premature thelarche from phenotype to genotype. Pediatr Endocrinol Rev. 2008;5:760–5.

    PubMed  Google Scholar 

  4. Aksglaede L, Sørensen K, Petersen JH, Skakkebaek NE, Juul A. Recent decline in age at breast development: the Copenhagen puberty study. Pediatrics. 2009;123:932–9.

    Article  Google Scholar 

  5. Biro FM, Galvez MP, Greenspan LC, Succop PA, Vangeepuram N, Pinney SM, Teitelbaum S, Windham GC, Kushi LH, Wolff MS. Pubertal assessment method and baseline characteristics in a mixed longitudinal study of girls. Pediatrics. 2010;126:583–90.

    Article  Google Scholar 

  6. Oltmann SC, Garcia N, Barber R, Huang R, Hicks B, Fischer A. Can we preoperatively risk stratify ovarian masses for malignancy? J Pediatr Surg. 2010;45:130–4.

    Article  PubMed  Google Scholar 

  7. Toppari J, Juul A. Trends in puberty timing in humans and environmental modifiers. Mol Cell Endocrinol. 2010;324:39–44.

    Article  PubMed  CAS  Google Scholar 

  8. Schoeters G, Den Hond E, Dhooge W, van Larebeke N, Leijs M. Endocrine disruptors and abnormalities of pubertal development. Basic Clin Pharmacol Toxicol. 2008;102:168–75.

    Article  PubMed  CAS  Google Scholar 

  9. Neville KA, Walker JL. Precocious pubarche is associated with SGA, prematurity, weight gain, and obesity. Arch Dis Child. 2005;90:258–61.

    Article  PubMed  CAS  Google Scholar 

  10. van Weissenbruch MM, Engelbregt MJ, Veening MA, Delemarre-van de Waal HA. Fetal nutrition and timing of puberty. Endocr Dev. 2005;8:15–33.

    Article  PubMed  Google Scholar 

  11. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24:668–93.

    Article  PubMed  Google Scholar 

  12. Mantovani A. Risk assessment of endocrine disrupters. The role of toxicological studies. Ann NY Acad Sci. 2006;1076:239–52.

    Article  PubMed  CAS  Google Scholar 

  13. Mouritsen A, Aksglaede L, Sørensen K, et al. Hypothesis: exposure to endocrine-disrupting chemicals may interfere with timing of puberty. Int J Androl. 2010;33:346–59.

    Article  PubMed  CAS  Google Scholar 

  14. Ambler GR. Androgen therapy for delayed male puberty. Curr Opin Endocrinol Diabetes Obes. 2009;16:232–9.

    Article  PubMed  CAS  Google Scholar 

  15. Aksglaede L, Juul A, Leffers H, Skakkebaek NE, Andersson AM. The sensitivity of the child to sex steroids: possible impact of exogenous estrogens. Hum Reprod Update. 2006;12:341–9.

    Article  PubMed  CAS  Google Scholar 

  16. Caserta D, Maranghi L, Mantovani A, Marci R, Maranghi F, Moscarini M. Impact of endocrine disruptor chemicals in gynaecology. Hum Reprod Update. 2008;14:59–72.

    Article  PubMed  CAS  Google Scholar 

  17. Roy JR, Chakraborty S, Chakraborty TR. Estrogen-like endocrine disrupting chemicals affecting puberty in humans–a review. Med Sci Monit. 2009;15:137–45.

    Google Scholar 

  18. Freni-Titulaer LW, Cordero JF, Haddock L, Lebron G, Martinez R, Mills JL. Premature thelarche in Puerto Rico. A search for environmental factors. Am J Dis Child. 1986;140:1263–7.

    PubMed  CAS  Google Scholar 

  19. Colon I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect. 2000;108:895–900.

    Article  PubMed  CAS  Google Scholar 

  20. Krstevska-Konstantinove M, Charlier C, Craen M, et al. Sexual precocity after immigration from developing countries to Belgium: Evidence of previous exposure to organochlorine pesticides. Hum Reprod. 2001;16:1020–6.

    Article  Google Scholar 

  21. Blanck HM, Marcus M, Tolbert BE, Rubin C, Henderson AK, Hertzberg VS, Zhang RH, Cameron L. Age at menarche and tanner stage in girls exposed in utero and postnatally to polybromonated biphenyl. Epidemiol. 2000;11:641–7.

    Article  CAS  Google Scholar 

  22. Wolff MS, Britton JA, Boguski L, et al. Environmental exposures and puberty in inner-city girls. Environ Res. 2008;107:393–400.

    Article  PubMed  CAS  Google Scholar 

  23. Wolff MS, Teitelbaum SL, Pinney SM, et al. Breast cancer and environment research centers. Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118:1039–46.

    Article  PubMed  CAS  Google Scholar 

  24. Den Hond E, Dhooge W, Bruckers L, et al. Internal exposure to pollutants and sexual maturation in Flemish adolescents. J Expo Sci Environ Epidemiol. 2010 Mar 3. [Epub ahead of print].

    Google Scholar 

  25. Geier DA, Young HA, Geier MR. Thimerosal exposure & increasing trends of premature puberty in the vaccine safety datalink. Indian J Med Res. 2010;131:500–7.

    PubMed  CAS  Google Scholar 

  26. Massart F, Seppia P, Pardi D, et al. High incidence of central precocious puberty in a bounded geographic area of northwest Tuscany: an estrogen disrupter epidemic? Gynecol Endocrinol. 2005;20:92–8.

    Article  PubMed  Google Scholar 

  27. Massart F, Meucci V, Saggese G, Soldani G. High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins. J Pediatr. 2008;152:690–5.

    Article  PubMed  CAS  Google Scholar 

  28. Massart F, Saggese G. Oestrogenic mycotoxin exposures and precocious pubertal development. Int J Androl. 2010;33:369–76.

    Article  PubMed  CAS  Google Scholar 

  29. Laffin B, Chavez M, Pine M. The pyrethroid metabolites 3-phenoxybenzoic acid and 3-phenoxybenzyl alcohol do not exhibit estrogenic activity in the MCF-7 human breast carcinoma cell line or Sprague-Dawley rats. Toxicology. 2010;267:39–44.

    Article  PubMed  CAS  Google Scholar 

  30. Calamandrei G, Maranghi F, Venerosi A, Alleva E, Mantovani A. Efficient testing strategies for evaluation of xenobiotics with neuroendocrine activity. Reprod Toxicol. 2006;22:164–74.

    Article  PubMed  CAS  Google Scholar 

  31. Rayner JL, Wood C, Fenton SE. Exposure parameters necessary for delayed puberty and mammary gland development in Long-Evans rats exposed in utero to atrazine. Toxicol Appl Pharmacol. 2004;195:23–34.

    Article  PubMed  CAS  Google Scholar 

  32. Rayner JL, Enoch RR, Fenton SE. Adverse effects of prenatal exposure to atrazine during a critical period of mammary gland growth. Toxicol Sci. 2005;87:255–66.

    Article  PubMed  CAS  Google Scholar 

  33. Stoker TE, Laws SC, Guidici DL, Cooper RL. The effect of atrazine on puberty in male wistar rats: an evaluation in the protocol for the assessment of pubertal development and thyroid function. Toxicol Sci. 2000;58:50–9.

    Article  PubMed  CAS  Google Scholar 

  34. Friedmann AS. Atrazine inhibition of testosterone production in rat males following peripubertal exposure. Reprod Toxicol. 2002;16:275–9.

    Article  PubMed  CAS  Google Scholar 

  35. Zorrilla LM, Gibson EK, Stoker TE. The effects of simazine, a chlorotriazine herbicide, on pubertal development in the female Wistar rat. Reprod Toxicol. 2010;29:393–400.

    Article  PubMed  CAS  Google Scholar 

  36. Belloni V, Dessì-Fulgheri F, Zaccaroni M, Di Consiglio E, De Angelis G, Testai E, Santochirico M, Alleva E, Santucci D. Early exposure to low doses of atrazine affects behavior in juvenile and adult CD1 mice. Toxicology. 2011;279(1–3):19–26.

    Article  PubMed  CAS  Google Scholar 

  37. Colciago A, Casati L, Mornati O, Vergoni AV, Santagostino A, Celotti F, Negri-Cesi P. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat Part 2: Effects on reproductive parameters, on sex behavior, on memory retention and on hypothalamic expression of aromatase and 5alpha-reductases in the offspring. Toxicol Appl Pharmacol. 2009;239:46–54.

    Article  PubMed  CAS  Google Scholar 

  38. Blystone CR, Lambright CS, Cardon MC, et al. Cumulative and antagonistic effects of a mixture of the antiandrogens vinclozolin and iprodione in the pubertal male rat. Toxicol Sci. 2009;111:179–88.

    Article  PubMed  CAS  Google Scholar 

  39. Blystone CR, Lambright CS, Furr J, Wilson VS, Gray Jr LE. Iprodione delays male rat pubertal development, reduces serum testosterone levels, and decreases ex vivo testicular testosterone production. Toxicol Lett. 2007;174(1–3):74–81.

    Article  PubMed  CAS  Google Scholar 

  40. Durrer S, Ehnes C, Fuetsch M, Maerkel K, Schlumpf M, Lichtensteiger W. Estrogen sensitivity of target genes and expression of nuclear receptor co-regulators in rat prostate after pre- and postnatal exposure to the ultraviolet filter 4-methylbenzylidene camphor. Environ Health Perspect. 2007;115(Suppl 1):42–50.

    PubMed  Google Scholar 

  41. Alam MS, Ohsako S, Matsuwaki T, et al. Induction of spermatogenic cell apoptosis in prepubertal rat testes irrespective of testicular steroidogenesis: a possible estrogenic effect of di(n-butyl) phthalate. Reproduction. 2010;139:427–37.

    Article  PubMed  CAS  Google Scholar 

  42. Chang MJ, Nam HK, Myong N, Kim SH. Age-related uterotrophic response of soy isoflavone intake in rats. J Med Food. 2007;10:300–7.

    Article  PubMed  CAS  Google Scholar 

  43. Wade MG, Lee A, McMahon A, Cooke G, Curran I. The influence of dietary isoflavone on the uterotrophic response in juvenile rats. Food Chem Toxicol. 2003;41:1517–25.

    Article  PubMed  CAS  Google Scholar 

  44. Maranghi F, Tassinari R, Moracci G, Macrì C, Mantovani A. Effects of a low oral dose of diethylstilbestrol (DES) on reproductive tract development in F1 female CD-1 mice. Reprod Toxicol. 2008;26:146–50.

    Article  PubMed  CAS  Google Scholar 

  45. Maranghi F, Rescia M, Macrì C, et al. Lindane may modulate the female reproductive development through the interaction with ER-beta: an in vivo-in vitro approach. Chem Biol Interact. 2007;169:1–14.

    Article  PubMed  CAS  Google Scholar 

  46. Moral R, Wang R, Russo IH, Mailo DA, Lamartiniere CA, Russo J. The plasticizer butyl benzyl phthalate induces genomic changes in rat mammary gland after neonatal/prepubertal exposure. BMC Genomics. 2007;8:453.

    Article  PubMed  Google Scholar 

  47. Masutomi N, Shibutani M, Takagi H, Uneyama C, Takahashi N, Hirose M. Impact of dietary exposure to methoxychlor, genistein, or diisononyl phthalate during the perinatal period on the development of the rat endocrine/reproductive systems in later life. Toxicology. 2003;192:149–70.

    Article  PubMed  CAS  Google Scholar 

  48. van Meeuwen JA, van den Berg M, Sanderson JT, Verhoef A, Piersma AH. Estrogenic effects of mixtures of phyto- and synthetic chemicals on uterine growth of prepubertal rats. Toxicol Lett. 2007;170:165–76.

    Article  PubMed  Google Scholar 

  49. Franczak A, Nynca A, Valdez KE, Mizinga KM, Petroff BK. Effects of acute and chronic exposure to the aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin on the transition to reproductive senescence in female Sprague-Dawley rats. Biol Reprod. 2006;74:125–30.

    Article  PubMed  CAS  Google Scholar 

  50. Yonezawa T, Hasegawa S, Ahn JY, et al. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway. Biochem Biophys Res Commun. 2007;355:10–5.

    Article  PubMed  CAS  Google Scholar 

  51. Si J, Wu X, Wan C, Zeng T, Zhang M, Xie K, Li J. Peripubertal exposure to low doses of tributyltin chloride affects the homeostasis of serum T, E2, LH, and body weight of male mice. Environ Toxicol. 2010 Jan 5. [Epub ahead of print]

    Google Scholar 

  52. Zhang L, Wang J, Zhu GN. Pubertal exposure to bismerthlazol inhibits thyroid function in juvenile female rats. Exp Toxicol Pathol. 2009;61:453–9.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang L, Wang J, Zhu GN. Pubertal exposure to saisentong: effects on thyroid and hepatic enzyme activity in juvenile female rats. Exp Toxicol Pathol. 2010;62:127–32.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang L, Wang J, Zhu GN, Su L. Pubertal exposure to thiodiazole copper inhibits thyroid function in juvenile female rats. Exp Toxicol Pathol. 2010;62:163–9.

    Article  PubMed  CAS  Google Scholar 

  55. Yoshida S, Ono N, Tsukue N, Oshio S, Umeda T, Takano H, Takeda K. In utero exposure to diesel exhaust increased accessory reproductive gland weight and serum testosterone concentration in male mice. Environ Sci. 2006;13:139–47.

    PubMed  CAS  Google Scholar 

  56. Li C, Taneda S, Taya K, et al. Effects of in utero exposure to nanoparticle-rich diesel exhaust on testicular function in immature male rats. Toxicol Lett. 2009;185:1–8.

    Article  PubMed  CAS  Google Scholar 

  57. Banu SK, Samuel JB, Arosh JA, Burghardt RC, Aruldhas MM. Lactational exposure to hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis and pituitary hormone synthesis in developing Wistar rats. Toxicol Appl Pharmacol. 2008;232:180–9.

    Article  PubMed  CAS  Google Scholar 

  58. Maranghi F, Tassinari R, Lagatta V, et al. Effects of the food contaminant semicarbazide following oral administration in juvenile Sprague-Dawley rats. Food Chem Toxicol. 2009;47:472–9.

    Article  PubMed  CAS  Google Scholar 

  59. Maranghi F, Tassinari R, Marcoccia D, et al. The food contaminant semicarbazide acts as an endocrine disrupter: evidence from an integrated in vivo/in vitro approach. Chem Biol Interact. 2010;183:40–8.

    Article  PubMed  CAS  Google Scholar 

  60. Navarro VM, Sánchez-Garrido MA, Castellano JM, et al. Persistent impairment of hypothalamic KiSS-1 system after exposures to estrogenic compounds at critical periods of brain sex differentiation. Endocrinology. 2009;150:2359–67.

    Article  PubMed  CAS  Google Scholar 

  61. Losa SM, Todd KL, Sullivan AW, Cao J, Mickens JA, Patisaul HB. Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod Toxicol. 2010 Oct 15. [Epub ahead of print].

    Google Scholar 

  62. Tena-Sempere M. Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. Int J Androl. 2010;33:360–8.

    Article  PubMed  CAS  Google Scholar 

  63. Zung A, Glaser T, Kerem Z, Zadik Z. Breast development in the first 2 years of life: an association with soy-based infant formulas. J Pediatr Gastroenterol Nutr. 2008;46:191–5.

    Article  PubMed  Google Scholar 

  64. Baldi F, Mantovani A. A new database for food safety: EDID (endocrine disrupting chemicals – diet interaction database). Ann Ist Super Sanita. 2008;44:57–63.

    PubMed  CAS  Google Scholar 

  65. Latini G, Knipp G, Mantovani A, Marcovecchio ML, Chiarelli F, Söder O. Endocrine disruptors and human health. Mini Rev Med Chem. 2010;10:846–55.

    Article  PubMed  CAS  Google Scholar 

  66. Ranjit N, Siefert K, Padmanabhan V. Bisphenol-A and disparities in birth outcomes: a review and directions for future research. J Perinatol. 2010;30(1):2–9.

    Article  PubMed  CAS  Google Scholar 

  67. Buck Louis GM, Gray Jr LE, Marcus M, et al. Environmental factors and puberty timing: expert panel research needs. Pediatrics. 2008;121(Suppl 3):S192–07.

    Article  PubMed  Google Scholar 

  68. Piersma AH, Rorije E, Beekhuijzen ME et al. Combined retrospective analysis of 498 rat multi-generation reproductive toxicity studies: on the impact of parameters related to F1 mating and F2 offspring. Reprod Toxicol. 2010 Dec 3. [Epub ahead of print].

    Google Scholar 

Download references

Acknowledgments

The paper has been prepared within the frame of the following projects: PREVIENI (htpp://www.iss.it/prvn), funded by the Italian Ministry of Environment; BRIDGE (website in preparation), funded by the EC 7th Framework Programme.

The support of Mrs. Francesca Baldi (Istituto Superiore di Sanità) in the preparation of the manuscript is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mantovani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mantovani, A. (2012). Endocrine Disruptors and Puberty Disorders from Mice to Men (and Women). In: Diamanti-Kandarakis, E., Gore, A. (eds) Endocrine Disruptors and Puberty. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60761-561-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-561-3_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-560-6

  • Online ISBN: 978-1-60761-561-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics