Skip to main content

Glycosylphosphatidylinositol Anchors As Natural Immunological Adjuvants Derived From Protozoan Parasites

  • Chapter
Vaccine Adjuvants

Abstract

Parasitism involves an intimate association between two different organisms. The host provides food and shelter for the parasite, and may or may not be injured by the parasite. As well elaborated in the book Living Together by William Trager (1), it is not in the best interest of the parasite to destroy the host. In the case of intracellular protozoan parasites that proliferate inside the vertebrate host cells, the immune system has a crucial role in controlling parasite replication and maintaining a balanced interaction between the parasite and the host, until the parasite encounters the transmitting vector or is shed to the environment to propagate its life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trager W. Living Together. The biology of animal parasitism. New York, NY: Plenum Press, 1986, pp. 1–467.

    Google Scholar 

  2. Pearce E, Scott PA, Sher A. Immune regulation in parasitic diseases. In: Paul W, ed. Fundamental of Immunology, 4th ed. Philadelphia: Lippincott-Raven, 1999, pp. 1271–1295.

    Google Scholar 

  3. Biron C, Gazzinelli RT. IL-12 effects on immune responses tomicrobial infections: a key mediator in regulating disease outcome. Curr Opin Immunol 1995;7:485–496.

    Article  PubMed  CAS  Google Scholar 

  4. Gazzinelli RT, Wysocka M, Hayashi S, Denkers E, Hieny S, Caspar P, Trinchieri G, Sher A. Parasite Induced IL-12 stimulates early IFN-g synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 1994;153:2533–2543.

    PubMed  CAS  Google Scholar 

  5. Aliberti JCS, Cardoso MAG, Martins GA, Gazzinelli RT, Vieira LQ, Silva JS. IL-12 mediates resistance to Trypanosoma cruzi infection in mice and is produced by normal murine macrophages in response to live trypomastigote. Infect Immunol 1996;64:1961–1967.

    CAS  Google Scholar 

  6. Mattner F, Magram J, Ferrante J, et al. Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 1996;26:1553–1559.

    Article  PubMed  CAS  Google Scholar 

  7. Su Z, Stevenson MM. IL-12 is required for antibody-mediated protective immunity against blood-stage Plasmodium chabaudi AS malaria infection in mice. J Immunol 2002;168:1348–1355.

    PubMed  CAS  Google Scholar 

  8. Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D. A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 20 2000;165:969–977

    CAS  Google Scholar 

  9. Roggero E, Perez A, Tamae-Kakasu M, et al. Differential susceptibility to acute Trypanosoma cruzi infection in BALB/c and C57BL/6 mice is not associated with a distinct parasite load but cytokine abnormalities. Clin Exp Immunol 2002;128:421–428.

    Article  PubMed  CAS  Google Scholar 

  10. Gazzinelli RT, Hieny S, Wysocka M, et al. In the absence of endogenous IL-10 mice acutely infected with Toxoplasma gondii succumb to a lethal CD41 T cell response associated with Type 1 cytokine synthesis. J Immunol 1996;157:798–805.

    PubMed  CAS  Google Scholar 

  11. Hunter CA, Ellis-Neyes LA, Slifer T, et al. IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi. J Immunol 1997;158:3311–3316.

    PubMed  CAS  Google Scholar 

  12. Michailowsky V, Silva NM, Rocha CD, Vieira LQ, Lannes-Vieira J, Gazzinelli RT. Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. Am J Pathol 2001;159:1723–1733.

    PubMed  CAS  Google Scholar 

  13. Scharton-Kersten T, Wynn TA, Denkers EY, et al. In absence of endogenous IFN-γ mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J Immunol 1996;157:4045–4054.

    PubMed  CAS  Google Scholar 

  14. Yap G, Pesin M, Sher A. Cutting edge: IL-12 is required for the maintenance of IFN-gamma production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J Immunol 2000;165:628–631.

    PubMed  CAS  Google Scholar 

  15. Clark IA, Schofield L. Pathogenesis of malaria. Parasitol Today 2000;16:451–454.

    Article  PubMed  CAS  Google Scholar 

  16. Linke A, Kuhn R, Muller W, Honarvar N, Li C, Langhorne J. Plasmodium chabaudi chabaudi: differential susceptibility of gene-targeted mice deficient in IL-10 to an erythrocytic-stage infection. Exp Parasitol 1996;84:253–263.

    Article  PubMed  CAS  Google Scholar 

  17. d’Imperio Lima MR, Eisen H, Minoprio P, Joskowicz, Coutinho A. Persistence of polyclonal B cell activation with undetectable parasitemia in late stages of experimental Chagas’ disease. J Immunol 1986;137:353–356

    PubMed  CAS  Google Scholar 

  18. Minoprio PM, Eisen H, Forni L, et al. Polyclonal lymphocyte responses to murine Trypanosoma cruzi infection. I. Quantitation of both T-and B-cell responses. Scand J Immunol 1986;24:661–668.

    Article  PubMed  CAS  Google Scholar 

  19. Minoprio P, Eisen H, Joskowicz M, Pereira P, Coutinho A. Suppression of polyclonal antibody production in Trypanosoma cruzi-infected mice by treatment with anti-L3T4 antibodies. J Immunol 1987;139:545–550.

    PubMed  CAS  Google Scholar 

  20. Cardillo F, Voltarelli JC, Reed SG, Silva JS. Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells. Infect Immun 1996;64:128–134.

    PubMed  CAS  Google Scholar 

  21. Une C, Andersson J, Eloranta ML, Sunnemark D, Harris RA, Orn A. Enhancement of natural killer (NK) cell cytotoxicity and induction of NK cell-derived interferon-gamma (IFN-gamma) display different kinetics during experimental infection with Trypanosoma cruzi. Clin Exp Immunol 2000;121:499–505.

    Article  PubMed  CAS  Google Scholar 

  22. Hunter CA, Slifer T, Araujo F. Interleukin-12-mediated resistance to Trypanosoma cruzi is dependent on tumor necrosis factor alpha and gamma interferon. Infect Immun 1996;64:2381–2386.

    PubMed  CAS  Google Scholar 

  23. Muller U, Kohler G, Mossmann H, et al. IL-12-independent IFN-gamma production by T cells in experimental Chagas’ disease is mediated by IL-18. J Immunol 2 2001;167:3346–3353.

    CAS  Google Scholar 

  24. Duthie MS, Wleklinski-Lee M, Nakayama T, Taniguchi M, Kahn SJ. During Trypanosoma cruzi infection CD1d-restricted NK T cells limit parasitemia and augment the antibody response to a glycophosphoinositol-modified surface protein. Infect Immun 2002;70:36–48.

    Article  PubMed  CAS  Google Scholar 

  25. Duthie MS, Kahn SJ. Treatment with alpha-galactosylceramide before Trypanosoma cruzi infection provides protection or induces failure to thrive. J Immunol 2002;168:5778–5785.

    PubMed  CAS  Google Scholar 

  26. Procópio DO, Almeida IC, et al. Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins from Trypanosoma cruzi bind to CD1d but do not elicit dominant innate or adaptive immune responses via the CD1d/NKT cell pathway. J Immunol 2002;169:3929–3933.

    Google Scholar 

  27. James SL, Kipnis TL, Sher A, Hoff R. Enhanced resistance to acute infection with Trypanosoma cruzi in mice treated with an interferon inducer. Infect Immun 1982;35:588–593.

    PubMed  CAS  Google Scholar 

  28. Nathan C, Nogueira N, Juangbhanich, Ellis J, Cohn Z. Activation of macrophages in vivo and in vitro. Correlation between hydrogen peroxide release and killing of Trypanosoma cruzi. J Exp Med 1979;149:1056–1068.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka Y, Kiyotaki C, Tanowitz H, Bloom BR. Reconstitution of a variant macrophage cell line defective in oxygen metabolism with a H2O2-generating system. Proc Natl Acad Sci USA 1982;79:2584–2588.

    Article  PubMed  CAS  Google Scholar 

  30. McCabe RE, Mullins BT. Failure of Trypanosoma cruzi to trigger the respiratory burst of activated macrophages. Mechanism for immune evasion and importance of oxygen-independent killing. J Immunol 1990;144:2384–2388.

    PubMed  CAS  Google Scholar 

  31. Gazzinelli RT, Oswald IP, Hieny S, James SL, Sher A. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. Eur J Immunol 1992;22:2501–2506.

    Article  PubMed  CAS  Google Scholar 

  32. Vespa GN, Cunha FQ, Silva JS. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Immun 1994;62:5177–5182.

    PubMed  CAS  Google Scholar 

  33. Seder RA, Gazzinelli RT, Sher A, Paul WE. IL-12 acts directly on CD4+ T cells to enhance priming for IFN-γ production and diminishes IL-4 inhibition of such priming. Proc Natl Acad Sci USA 1993;90:10188–10192.

    Article  PubMed  CAS  Google Scholar 

  34. Saeftel M, Fleischer B, Hoerauf A. Stage-dependent role of nitric oxide in control of Trypanosoma cruzi infection. Infect Immun 2001;69:2252–2259.

    Article  PubMed  CAS  Google Scholar 

  35. Tarleton RL, Koller BH, Latour A, Postan M. Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature 1992;356:338–340.

    Article  PubMed  CAS  Google Scholar 

  36. Brodskyn CI, da Silva AM, Takehara HA, Mota I. Characterization of antibody isotype responsible for immune clearance in mice infected with Trypanosoma cruzi. Immunol Lett 1988;18:255–258.

    Article  PubMed  CAS  Google Scholar 

  37. Abrahamsohn I, Coffman RL. Cytokine and nitric oxide regulation of the immunosuppression in Trypanosoma cruzi infection. J Immunol 1995;155:3955–3963.

    PubMed  CAS  Google Scholar 

  38. Lopes MF, da Veiga VF, Santos AR, Fonseca ME, dosReis GA. Activation-induced CD4+ T cell death by apoptosis in experimental Chagas’ disease. J Immunol 1995;154:744–752.

    PubMed  CAS  Google Scholar 

  39. Freire-de-Lima CG, Nascimento DO, Soares MB, et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 2000;403:199–203.

    Article  PubMed  CAS  Google Scholar 

  40. Tardieux I, Webster P, Ravesltoot J, et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 1992;71:1117–1130.

    Article  PubMed  CAS  Google Scholar 

  41. Burleigh BA, Caler EV, Webster P, Andrews NW. A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J Cell Biol 1997;136:609–620.

    Article  PubMed  CAS  Google Scholar 

  42. Scharfstein J, Schmitz V, Morandi V, et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B (2) receptors. J Exp Med 2000;192:1289–1300.

    Article  PubMed  CAS  Google Scholar 

  43. Aliberti JCS, Machado FS, Souto JT, et al. β-chemokines enhance parasite uptake and promote nitric oxide-dependent microbiostatic activity in murine inflammatory macrophages infected with Trypanosoma cruzi. Infect Immun 1999;67:4819–4826.

    PubMed  CAS  Google Scholar 

  44. Villalta F, Zhang Y, Bibb KE, Burns JM Jr, Lima M. Signal transduction in human macrophages by gp83 ligand of Trypanosoma cruzi: trypomastigote gp83 ligand up-regulates trypanosome entry through the MAP kinase pathway. Biochem Biophys Res Commun 1998;249:247–252.

    Article  PubMed  CAS  Google Scholar 

  45. Villalta F, Zhang Y, Bibb KE, Pratap S, Burns JM Jr, Lima MF. Signal transduction in human macrophages by gp83 ligand of Trypanosoma cruzi: trypomastigote gp83 ligand up-regulates trypanosome entry through protein kinase C activation. Mol Cell Biol Res Commun 1999;2:64–70.

    Article  PubMed  CAS  Google Scholar 

  46. Hall BS, Tam W, Sem R, Pereira ME. Cell-specific activation of nuclear factorkappaB by the parasite Trypanosoma cruzi promotes resistance to intracellular infection. Mol Biol Cell 2000;11:153–160.

    PubMed  CAS  Google Scholar 

  47. Ming M, Ewen ME, Pereira ME. Trypanosome invasion of mammalian cells requires activation of the TGF beta signaling pathway. Cell 1995;82:287–296.

    Article  PubMed  CAS  Google Scholar 

  48. Camargo MM, Almeida IC, Pereira MES, Ferguson MAJ, Travassos LR, Gazzinelli RT. Glycosylphosphatidylinositol anchored mucin-like glycoproteins isolated from Trypanosma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. J Immunol 1997;158:5980–5991.

    Google Scholar 

  49. Camargo MM, Andrade AC, Almeida IC, Travassos LR, Gazzinelli RT. Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania sp. membranes trigger nitric oxide synthesis as well as microbicidal activity in IFN-γ primed macrophages. J Immunol 1997;159:6131–6139.

    PubMed  CAS  Google Scholar 

  50. Ferreira LRP, Silva AM, Michailowsky V, Reis LFL, Gazzinelli RT. Expression of serum amyloid A3 mRNA by inflammatory macrophages exposed to membrane glycoconjugates from Trypanosoma cruzi. J Leuk Biol 1999;66:593–600.

    CAS  Google Scholar 

  51. Talvani A, Ribeiro CS, Aliberti JCS, et al. Kinetics of cytokine genes expression in experimental chagasic cardiomyopathy: tissue parasitism and IFN-γ as important determinants of chemokine mRNAs expression during infection with Trypanosoma cruzi. Microb Infect 2000;2:851–866.

    Article  CAS  Google Scholar 

  52. Huang H, Calderon TM, Berman JW, et al. Infection of endothelial cells with Trypanosoma cruzi activates NF-kappaB and induces vascular adhesion molecule expression. Infect Immun 1999;67:5434–5440.

    PubMed  CAS  Google Scholar 

  53. Huang H, Petkova SB, Pestell RG, et al. Trypanosoma cruzi infection (Chagas’ disease) of mice causes activation of the mitogen-activated protein kinase cascade and expression of endothelin-1 in the myocardium. J Cardiovasc Pharmacol 2000;36(Suppl 1):S148–S150.

    PubMed  CAS  Google Scholar 

  54. Machado FS, Martins GA, Aliberti JC, Mestriner FL, Cunha FQ, Silva JS. Trypanosoma cruzi-infected cardiomyocytes produce chemokines and cytokines that trigger potent nitric oxide-dependent trypanocidal activity. Circulation 2000;102:3003–3008.

    PubMed  CAS  Google Scholar 

  55. de Avalos SV, Blader IJ, Fisher M, Boothroyd JC, Burleigh BA. Immediate/early response to Trypanosoma cruzi infection involves minimal modulation of host cell transcription. J Biol Chem 2002;277:639–644.

    Article  Google Scholar 

  56. Almeida IC, Camargo MM, Procopio DO, et al. Highly-purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J 2000;19:1476–1485.

    Article  PubMed  CAS  Google Scholar 

  57. Saavedra E, Herrera M, Gao W, Uemura H, Pereira MA. The Trypanosoma cruzi trans-sialidase, through its COOH-terminal tandem repeat, upregulates interleukin 6 secretion in normal human intestinal microvascular endothelial cells and peripheral blood mononuclear cells. J Exp Med 1999;190:1825–1836.

    Article  PubMed  CAS  Google Scholar 

  58. Ouaissi A, Guilvard E, Delneste Y, et al. The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection. J Immunol 2002;168:6366–6374.

    PubMed  CAS  Google Scholar 

  59. Norimine J, Suarez CE, McElwain TF, Florin-Christensen M, Brown WC. Immunodominant epitopes in Babesia bovis rhoptry-associated protein 1 that elicit memory CD4(+)-T-lymphocyte responses in B. bovis-immune individuals are located in the amino-terminal domain. Infect Immun 2002;70:2039–2048.

    Article  PubMed  CAS  Google Scholar 

  60. Coelho SC, Klein A, Talvani A, et al. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes induce in vivo leuckocyte recruitment dependent on MCP-1 production by IFN-γ-primed macrophages. J Leuk Biol 2002;71:837–844.

    CAS  Google Scholar 

  61. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  62. Ferguson MAJ. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of Trypanosome research. J Cell Sci 1999;112:2799–2809.

    PubMed  CAS  Google Scholar 

  63. Almeida IC, Gazzinelli RT. Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses. J Leuk Biol 2001;70:467–477.

    CAS  Google Scholar 

  64. Schofield L, Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med 1993;177:145–153.

    Article  PubMed  CAS  Google Scholar 

  65. Naik RS, Branch OLH, Wood AS, et al. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J Exp Med 2000;192:1563–1575.

    Article  PubMed  CAS  Google Scholar 

  66. Magez S, Stijlemans B, Radwanska M, Pays E, Ferguson MAJ, Debestlier P. The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the Trypanosoma variant-specific surface glycoprotein are distinct macrophage activating factors. J Immunol 1998;160:1949–1956.

    PubMed  CAS  Google Scholar 

  67. Freire-de-Lima CG, Nunes MP, Corte-Real S, et al. Proapoptotic activity of a Trypanosoma cruzi ceramide-containing glycolipid turned on in host macrophages by IFN-γ. J Immunol 1998;161:4909–4916.

    PubMed  CAS  Google Scholar 

  68. Bellio M, Oliveira ACSC, Mermelstein CS, et al. Costimulatory action of glycoinositolphospholipids from Trypanosome cruzi: increased interleukin 2 secretion and induction of nuclear translocation of the nuclear factor of activated T cells 1. FASEB J 1999;13:1627–1635.

    PubMed  CAS  Google Scholar 

  69. Bento CA, Melo MB, Previato JO, Mendonça-Previato L, Peçanha LM. Glycoinositolphospholipids purified from Trypanosoma cruzi stimulate Ig production in vitro. J Immunol 1996;157:4996–5001.

    PubMed  CAS  Google Scholar 

  70. De Arruda Hinds LB, Previato LM, et al. Modulation of B-lymphocyte and NK cell activities by glycoinositolphospholipid purified from Trypanosoma cruzi. Infect Immun 1999;67:6177–6180.

    PubMed  Google Scholar 

  71. Bilate AM, Previato JO, Medonça-Previato L, Peçanha LM. Glycoinositolphospholipids from Trypanosoma cruzi induce B cell hyper-responsiveness in vivo. Glycoconj J 2000;17:727–734.

    Article  PubMed  CAS  Google Scholar 

  72. De Arruda Hindas LB, Alexandre-Moreira MS, Decote-Ricardo D, Nunes MP, Peçanha LM. Increased immunoglobulin secretion by B lymphocytes from Trypanosoma cruzi infected mice after B lymphocytes-natural killer cell interaction. Parasite Immunol 2001;23:581–586.

    Article  Google Scholar 

  73. Weston CR, Lambright DG, Davis RJ. MAP kinase signaling specificity. Science 2002;296:2345–2347.

    Article  PubMed  CAS  Google Scholar 

  74. Bhat NR, Zhang P, Lee JC, Hogan EL. Extracellular signal-regulated kinase and SAPK-2/p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxinstimulated primary glial cultures. J Neurosci 1998;18:1633–1641.

    PubMed  CAS  Google Scholar 

  75. Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 1996;271:24313.

    Article  PubMed  CAS  Google Scholar 

  76. Ropert C, Almeida IC, Closel M, et al. Requirement of MAP kinases and IκB phosphorylation for induction of proinflammatory cytokines synthesis by macrophages indicates functional similarity of receptors triggered by glycosylphosphatidylinositol anchors from parasitic protozoa and bacterial LPS. J Immunol 2001;166:3423–3431.

    PubMed  CAS  Google Scholar 

  77. Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptative immunity. Nature 1997;388:394–397.

    Article  PubMed  CAS  Google Scholar 

  78. Lien E, Sellati TJ, Yoshimura A, et al. Toll-like receptor-2 functions as a pattern recognition receptor fro diverse bacterial products. J Biol Chem 1999;274:33419–33425.

    Article  PubMed  CAS  Google Scholar 

  79. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–745.

    Article  PubMed  CAS  Google Scholar 

  80. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001;413:732–738.

    Article  PubMed  CAS  Google Scholar 

  81. Shiloh MU, MacMicking JD, Nicholson S, et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 1999;10:29–38.

    Article  PubMed  CAS  Google Scholar 

  82. Brightbill HD, Libraty HD, Krutzick SR, et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999;285:732–736.

    Article  PubMed  CAS  Google Scholar 

  83. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  84. Campos MAS, Almeida IC, Takeuchi O, et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001;167:416–423.

    PubMed  CAS  Google Scholar 

  85. Singh M, O’Hagan D. Advances in vaccine adjuvants. Nat Biotech 1999;17:1075–1081.

    Article  CAS  Google Scholar 

  86. Bendelac A, Medzhitov R. Adjuvants of immunity: Harnessing innate immunity to promote adaptive immunity. J Exp Med 2002;195:F19–F23.

    Article  PubMed  CAS  Google Scholar 

  87. Freund J, McDermottt K. Sensitization to horse serum by means of adjuvants. Proc Soc Exp Biol Med 1942;49:548–553.

    CAS  Google Scholar 

  88. Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochem Biophys Acta 2002;1589:1–13.

    Article  PubMed  CAS  Google Scholar 

  89. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675–680.

    Article  PubMed  CAS  Google Scholar 

  90. Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001;69:1477–1482.

    Article  PubMed  CAS  Google Scholar 

  91. Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 2001;276:37692–37699.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Gazzinelli, R.T., Ropert, C., Almeida, I.C., Silva, J.S., Campos, M.A. (2006). Glycosylphosphatidylinositol Anchors As Natural Immunological Adjuvants Derived From Protozoan Parasites. In: Hackett, C.J., Harn, D.A. (eds) Vaccine Adjuvants. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59259-970-7_8

Download citation

Publish with us

Policies and ethics