Skip to main content

CpG ODN As a Th1 Immune Enhancer for Prophylactic and Therapeutic Vaccines

  • Chapter
Vaccine Adjuvants

Part of the book series: Infectious Disease ((ID))

Abstract

Adaptive immunity, which comes about through highly specific recognition of antigenic epitopes on B and T cells, results in the development of antigen-specific antibodies and cytotoxic T-cell responses. However, these processes rely very heavily on simultaneous activation of cells of the innate immune system including dendritic cells (DCs), macrophages, and monocytes. Cells of the innate immune system lack highly specific antigen receptors, but rather rely on a set of pattern recognition receptors (PRRs), which have a general ability to detect pathogen-associated molecular patterns (PAMPs) that are specific molecular structures found in pathogens, but not in self tissues (1,2). Many of the PRRs are found in the family of Toll-like receptors (TLR), of which at least 10 types have been identified. Examples of PAMPs that PRRs detect include endotoxins, flagellin, high mannose proteins, single- and double-stranded viral ribonucleic acids (RNAs) and the unmethylated CpG dinucleotides in particular base contexts (CpG motifs) that are prevalent in bacterial and many viral deoxyribonucleic acids (DNAs), but are heavily suppressed and methylated in vertebrate genomes (15). The immune system appears to use the presence of these PAMPs as a “danger signal” that indicates the presence of infection and activates appropriate defense pathways. Recently there has been broad interest in testing and developing such “danger signal” ligands of PRRs for immune stimulation, including use as adjuvants to enhance antigen-specific responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 1996;271:348–350.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar A, Yang YL, Flati V, et al. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB EMBO J 1997;16:406–416.

    Article  PubMed  CAS  Google Scholar 

  3. Bird A. CpG Islands as gene markers in the vertebrate nucleus. Trends Genet 1987;3:342–347.

    Article  CAS  Google Scholar 

  4. Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct Bcell activation. Nature 1995;374:546–549.

    Article  PubMed  CAS  Google Scholar 

  5. Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9:4–9.

    Article  PubMed  CAS  Google Scholar 

  6. Tokunaga T, Yamamoto H, Shimada S, et al. (1984) Antitumor activity of deoxyribonucleic acid fraction from mycobacterium bovis BCG isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 1984;72:955–962.

    PubMed  CAS  Google Scholar 

  7. Liang H, Nishioka Y, Reich CF, Pisetsky DS, Lipsky PE. (1996) Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest 1996;98:1119–1129.

    PubMed  CAS  Google Scholar 

  8. Yi AK, Chang M, Peckham DW, Krieg AM, Ashman RF. CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol 1998;160:5898–5906.

    PubMed  CAS  Google Scholar 

  9. Yi AK, Hornbeck P, Lafrenz DE, Krieg AM. CpG DNA rescue of murine B lymphoma cells from anti-IgM-induced growth arrest and programmed cell death is associated with increased expression of c-myc and bcl-xL. J Immunol 1996;157:4918–4925.

    PubMed  CAS  Google Scholar 

  10. Hartmann G, Weeratna RD, Ballas ZK, et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000;164:1617–1624.

    PubMed  CAS  Google Scholar 

  11. Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000;164:944–953.

    PubMed  CAS  Google Scholar 

  12. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC. (1998) Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. J Immunol 1998;161:3042–3049.

    PubMed  CAS  Google Scholar 

  13. Sparwasser T, Koch ES, Vabulas RM, et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998;28:2045–2054.

    Article  PubMed  CAS  Google Scholar 

  14. Sparwasser T, Vabulas RM, Villmow B, Lipford GB, Wagner H. Bacterial CpGDNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins. Eur J Immunol 2000;30:3591–3597.

    Article  PubMed  CAS  Google Scholar 

  15. Wild J, Grusby MJ, Schirmbeck R, Reimann J. Priming MHC-I-restricted cytotoxic T lymphocyte responses to exogenous hepatitis B surface antigen is CD41 T cell dependent. J Immunol 1999;163:1880–1887.

    PubMed  CAS  Google Scholar 

  16. Hartmann G, Weiner GJ, Krieg AM. CpG DNA: a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 1999;96:9305–9310.

    Article  PubMed  CAS  Google Scholar 

  17. Hartmann G, Krieg AM. CpG DNA and LPS induce distinct patterns of activation in human monocytes. Gene Ther 1999;6:893–903.

    Article  PubMed  CAS  Google Scholar 

  18. Sparwasser T, Miethke T, Lipford G, Erdmann A, Hacker H, Heeg K, Wagner H. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol 1997;27:1671–1679.

    Article  PubMed  CAS  Google Scholar 

  19. Stacey KJ, Sweet MJ, Hume DA. Macrophages ingest and are activated by bacterial DNA. J Immunol 1996;157:2116–2122.

    PubMed  CAS  Google Scholar 

  20. Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996;157:1840–1845.

    PubMed  CAS  Google Scholar 

  21. Iho S, Yamamoto T, Takahashi T, Yamamoto S. Oligodeoxynucleotides containing palindrome sequences with internal 5′-CpG-3′ act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J Immunol 1999;163:3642–3652.

    PubMed  CAS  Google Scholar 

  22. Yamamoto T, Yamamoto S, Kataoka T, Tokunaga T. Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol 1999;38:831–836.

    Google Scholar 

  23. Krieg AM, Wu T, Weeratna R, Efler SM, Love-Homan L, Yang L, Yi AK, Short D, Davis HL. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA 1998;95:12631–12636.

    Article  PubMed  CAS  Google Scholar 

  24. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2000;20:709–760.

    Article  Google Scholar 

  25. Vollmer J, Weeratna R, Payette P, et al. (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 2004;34:251–262.

    Article  PubMed  CAS  Google Scholar 

  26. Rankin R, Pontarollo R, Ioannou X, et al. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev 2001;11:333–340.

    Article  PubMed  CAS  Google Scholar 

  27. Brown WC, Estes DM, Chantler SE, Kegerreis KA, Suarez CE. DNA and a CpG oligonucleotide derived from Babesia bovis are mitogenic for bovine B cells. Infect Immun 1998;66:5423–5432.

    PubMed  CAS  Google Scholar 

  28. Pisetsky DS, Reich CF, III. The influence of base sequence on the immunological properties of defined oligonucleotides. Immunopharmacology 1998;40:199–208.

    Article  PubMed  CAS  Google Scholar 

  29. Nicklin PS, Craig SJ, Phillips JA. Pharmacokinetic properties of phosphorothioates in animals—absorption, distribution, metabolism and elimination. In: Crooke ST, ed. Antisense Research and Application, Vol. 131. Berlin Heidelberg Germany, New York, NY:%Springer-Verlag, 1998, pp. 141–168.

    Google Scholar 

  30. Zhao Q, Waldschmidt T, Fisher E, Herrera CJ, Krieg AM. Stage-specific oligonucleotide uptake in murine bone marrow B-cell precursors. Blood 1994;84:3660–3666.

    PubMed  CAS  Google Scholar 

  31. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB. Human TLR9 confers responsiveness to bacterial DNA via speciesspecific CpG motif recognition. Proc Natl Acad Sci USA 2001;98:9237–9242.

    Article  PubMed  CAS  Google Scholar 

  32. Hacker H, Mischak H, Miethke T, et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 1998;17:6230–6240.

    Article  PubMed  CAS  Google Scholar 

  33. Macfarlane DE, Manzel L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol 1998;160:1122–1131.

    PubMed  CAS  Google Scholar 

  34. Strekowski L, Zegrocka O, Henary M, et al. Structure-activity relationship analysis of substituted 4-quinolinamines, antagonists of immunostimulatory CpG-oligodeoxynucleotides. Bioorg Med Chem Lett 1999;9:1819–1824.

    Article  PubMed  CAS  Google Scholar 

  35. Yi AK, Krieg AM. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol 1998;161:4493–4497.

    PubMed  CAS  Google Scholar 

  36. Yi AK, Tuetken R, Redford T, Waldschmidt M, Kirsch J, Krieg AM. CpG motifs in bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol 1998;160:4755–4761.

    PubMed  CAS  Google Scholar 

  37. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  38. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 2002;3:499.

    Article  PubMed  CAS  Google Scholar 

  39. Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 2001;31:3026–3037.

    Article  PubMed  CAS  Google Scholar 

  40. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–745.

    Article  PubMed  CAS  Google Scholar 

  41. Wagner H. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Curr Opin Microbiol 2002;5:62–69.

    Article  PubMed  CAS  Google Scholar 

  42. Yi AK, Krieg AM. CpG DNA rescue from anti-IgM-induced WEHI-231 B lymphoma apoptosis via modulation of I kappa B alpha and I kappa B beta and sustained activation of nuclear factor-kappa B/c-Rel. J Immunol 1998;160:1240–1245.

    PubMed  CAS  Google Scholar 

  43. Chu W, Gong X, Li Z, et al. DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA. Cell 2000;103:909–918.

    Article  PubMed  CAS  Google Scholar 

  44. Chace JH, Hooker NA, Mildenstein KL, Krieg AM, Cowdery JS. Bacterial DNAinduced NK cell IFN-gamma production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 1997;84:185–193.

    Article  PubMed  CAS  Google Scholar 

  45. Redford TW, Yi AK, Ward CT, Krieg AM. Cyclosporin A enhances IL-12 production by CpG motifs in bacterial DNA and synthetic oligodeoxynucleotides. J Immunol 1998;161:3930–3935.

    PubMed  CAS  Google Scholar 

  46. Yi AK, Klinman DM, Martin TL, Matson S, Krieg AM. Rapid immune activation by CpG motifs in bacterial DNASy. stemic induction of IL-6 transcription through an antioxidant-sensitive pathway. J Immunol 1996;157:5394–5402.

    PubMed  CAS  Google Scholar 

  47. Anitescu M, Chace JH, Tuetken R, Yi AK, Berg DJ, Krieg AM, Cowdery JS. Interleukin-10 functions in vitro and in vivo to inhibit bacterial DNA-induced secretion of interleukin-12. J Interferon Cytokine Res 1997;17:781–788.

    Article  PubMed  CAS  Google Scholar 

  48. Sun S, Zhang X, Tough DF, Sprent J. Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 1998;188:2335–2342.

    Article  PubMed  CAS  Google Scholar 

  49. Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants [see comments]. Nat Med 1997;3:849–854.

    Article  PubMed  CAS  Google Scholar 

  50. Schwartz DA, Quinn TJ, Thorne PS, Sayeed S, Yi AK, Krieg AM. CpG motifs in bacterial DNA cause inflammation in the lower respiratory tract. J Clin Invest 1997;100:68–73.

    PubMed  CAS  Google Scholar 

  51. Zhao Q, Temsamani J, Zhou RZ, Agrawal S. Pattern and kinetics of cytokine production following administration of phosphorothioate oligonucleotides in mice. Antisense Nucleic Acid Drug Dev 1997;7:495–502.

    PubMed  CAS  Google Scholar 

  52. Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 1999;73:329–368.

    Article  PubMed  CAS  Google Scholar 

  53. Lipford GB, Bauer M, Blank C, Reiter R, Wagner H, Heeg K. CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 1997;27:2340–2344.

    Article  PubMed  CAS  Google Scholar 

  54. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA 1996;93:2879–2883.

    Article  PubMed  CAS  Google Scholar 

  55. Krieg AM, Love-Homan L, Yi AK, Harty JT. CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998;161:2428–2434.

    PubMed  CAS  Google Scholar 

  56. Lipford GB, Sparwasser T, Zimmermann S, Heeg K, Wagner H. CpG-DNAmediated transient lymphadenopathy is associated with a state of Th1 predisposition to antigen-driven responses. J Immunol 2000;165:1228–1235.

    PubMed  CAS  Google Scholar 

  57. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999;189:169–178.

    Article  PubMed  CAS  Google Scholar 

  58. Kobayashi H, Horner AA, Takabayashi K, et al. Immunostimulatory DNA prepriming: a novel approach for prolonged Th1-biased immunity. Cell Immunol 1999;198:69–75.

    Article  PubMed  CAS  Google Scholar 

  59. Davis HL, Weeratna R, Waldschmidt TJ, et al. CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 1998;160:870–876.

    PubMed  CAS  Google Scholar 

  60. Rhee EG, Mendez S, Shah JA, et al. Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD41 and CD81 T cell responses and protection against leishmania major infection. J Exp Med 2002;195:1565–1573.

    Article  PubMed  CAS  Google Scholar 

  61. Vabulas RM, Pircher H, Lipford GB, Hacker H, Wagner H. CpG-DNA activates in vivo T cell epitope presenting dendritic cells to trigger protective antiviral cytotoxic T cell responses. J Immunol 2000;164:2372–2378.

    PubMed  CAS  Google Scholar 

  62. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997;186:1623–1631.

    Article  PubMed  CAS  Google Scholar 

  63. Sun S, Kishimoto H, Sprent J. DNA as an adjuvant: capacity of insect DNA and synthetic oligodeoxynucleotides to augment T cell responses to specific antigen. J Exp Med 1998;187:1145–1150.

    Article  PubMed  CAS  Google Scholar 

  64. Schirmbeck R, Melber K, Reimann J. Adjuvants that enhance priming of cytotoxic T cells to a Kb-restricted epitope processed from exogenous but not endogenous hepatitis B surface antigen. Int Immunol 1999;11:1093–1102.

    Article  PubMed  CAS  Google Scholar 

  65. Ma X, Forns X, Gutierrex R, et al. DNA-based vaccination against hepatitis C virus (HCV): effect of expressing different forms of HCV E2 protein and use of CpGoptimized vectors in mice. Vaccine 2002;20:3263–3271.

    Article  PubMed  CAS  Google Scholar 

  66. Gallichan WS, Woolstencroft RN, Guarasci T, McCluskie MJ, Davis HL, Rosenthal KL. Intranasal immunization with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol 2001;166:3451–3457.

    PubMed  CAS  Google Scholar 

  67. Moldoveanu Z, Love-Homan L, Huang WQ, Krieg AM. CpGDNA, a novel immune enhancer for systemic and mucosal immunization with influenza virus. Vaccine 1998;16:1216–1224.

    Article  PubMed  CAS  Google Scholar 

  68. Choi AH, McNeal MM, Flint JA, et al. The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine 2002;20:1733–1740.

    Article  PubMed  CAS  Google Scholar 

  69. Deml L, Schirmbeck R, Reimann J, Wolf H, Wagner R. Immunostimulatory CpG motifs trigger a T helper-1 immune response to human immunodeficiency virus type-1 (HIV-1) gp 1 60 envelope proteins. Clin Chem Lab Med 1999;37:199–204.

    Article  PubMed  CAS  Google Scholar 

  70. Moss RB, Diveley J, Jensen F, Carlo DJ. In vitro immune function after vaccination with an inactivated, gp120-depleted HIV-1 antigen with immunostimulatory oligodeoxynucleotides. Vaccine 2000;8:1081–1087.

    Article  Google Scholar 

  71. Freidag BL, Melton GB, Collins F, et al. CpG oligodeoxynucleotides and interleukin-12 improve the efficacy of Mycobacterium bovis BCG vaccination in mice challenged with M. tuberculosis. Infect Immun 2000;68:2948–2953.

    Article  PubMed  CAS  Google Scholar 

  72. Weeratna R, Comanita L, Davis HL. (2003) CPG ODN allows lower dose of antigen against hepatitis B surface antigen in BALB/c mice. Immunol Cell Biol 2003;81:59–62.

    Article  PubMed  CAS  Google Scholar 

  73. Davis HL. Use of CpG DNA for enhancing specific immune responses. Curr Top Microbiol Immunol 2000;247:171–183.

    PubMed  CAS  Google Scholar 

  74. Kim SK, Ragupathi G, Cappello S, Kagan E, Livingston PO. Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine 2001;19:530–537.

    Article  Google Scholar 

  75. Jones TR, Obaldia N, III, Gramzinski RA, et al. Synthetic oligodeoxynucleotides containing CpG motifs enhance immunogenicity of a peptide malaria vaccine in Aotus monkeys. Vaccine 1999;17:3065–3071.

    Article  PubMed  CAS  Google Scholar 

  76. Davis HL. DNA vaccines for prophylactic or therapeutic immunization against hepatitis B virus. Mt Sinai J Med 1999;66:84–90.

    PubMed  CAS  Google Scholar 

  77. Cooper CL, Davis H, Morris ML, et al. CpG 7 909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind Phase I/II study. J Clin Immunol 2004;24:693–702.

    Article  PubMed  CAS  Google Scholar 

  78. Siegrist C-A, Pihlgren M, Tougne C, et al. Co-administraction of CpG oligonucleotides enhances the late affinity maturation process of human anti-hepatitis B vaccine response. Vaccine 2004;23:615–622.

    Article  PubMed  CAS  Google Scholar 

  79. Cooper CL, Davis HL, Angel JB, et al. CpG 7909 is safe and highly effective as an adjuvant to HBV vaccine in HIV seropositive adults. AIDS 2005 (in press).

    Google Scholar 

  80. Kanellos TS, Sylvester ID, Butler VL, et al. Mammalian granulocyte-macrophage colony-stimulating factor and some CpG motifs have an effect on the immunogenicity of DNA and subunit vaccines in fish. Immunology 1999;96:507–510.

    Article  PubMed  CAS  Google Scholar 

  81. Lorenzen N, Lorenzen E, Einer-Jensen K, Heppell J, Wu T, Davis HL. Protective immunity to VHS in rainbow trout (Oncorhynchus mykiss, Walbaum) following DNA vaccination. Fish Shellfish Immunol 1998;8:261–270.

    Article  Google Scholar 

  82. Threadgill DS, McCormick LL, McCool TL, Greenspan NS, Schreiber JR. Mitogenic synthetic polynucleotides suppress the antibody response to a bacterial polysaccharide. Vaccine 1998;16:76–82.

    Article  PubMed  CAS  Google Scholar 

  83. Chu RS, McCool T, Greenspan NS, Schreiber JR, Harding CV. CpG oligodeoxynucleotides act as adjuvants for pneumococcal polysaccharide-protein conjugate vaccines and enhance antipolysaccharide immunoglobulin G2a (IgG2a) and IgG3 antibodies. Infect Immun 2000;68:1450–1456.

    Article  PubMed  CAS  Google Scholar 

  84. Kovarik J, Bozzotti P, Tougne C, et al. Adjuvant effects of CpG oligodeoxynucleotides on responses against T-independent type 2 antigens. Immunology 2001;102:67–76.

    Article  PubMed  CAS  Google Scholar 

  85. Chelvarajan RL, Raithatha R, Venkataraman C, et al. CpG oligodeoxynucleotides overcome the unresponsiveness of neonatal B cells to stimulation with the thymus-independent stimuli anti-IgM and TNP-Ficoll. Eur J Immunol 1999;29:2808–2818.

    Article  PubMed  CAS  Google Scholar 

  86. Horner AA, Ronaghy A, Cheng PM, et al. Immunostimulatory DNA is a potent mucosal adjuvant. Cell Immunol 1998;190:77–82.

    Article  PubMed  CAS  Google Scholar 

  87. McCluskie MJ, Davis HL. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol 1998;161:4463–4466.

    PubMed  CAS  Google Scholar 

  88. McCluskie MJ, Davis HL. Oral, intrarectal and intranasal immunizations using CpG and non-CpG oligodeoxynucleotides as adjuvants. Vaccine 2000;19:413–422.

    Article  PubMed  CAS  Google Scholar 

  89. McCluskie MJ, Weeratna RD, Clements JD, Davis HL. Mucosal immunization of mice using CpG DNA and/or mutants of the heat-labile enterotoxin of Escherichia coli as adjuvants. Vaccine 2001;19:3759–3768.

    Article  PubMed  CAS  Google Scholar 

  90. McCluskie MJ, Weeratna RD, Davis HL. The potential of oligodeoxynucleotides as mucosal and parenteral adjuvants. Vaccine 2001;19:2657–2660.

    Article  PubMed  CAS  Google Scholar 

  91. McCluskie MJ, Weeratna RD, Krieg AM, Davis HL. CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine 2000;19:950–957.

    Article  PubMed  CAS  Google Scholar 

  92. McCluskie MJ, Weeratna RD, Payette PJ, Davis HL. Parenteral and mucosal prime-boost immunization strategies in mice with hepatitis B surface antigen and CpG DNA FEMS Immunol Med Microbiol 2002;32:179–185.

    Article  PubMed  CAS  Google Scholar 

  93. Brazolot Millan CL, Weeratna R, Krieg AM, Siegrist CA, Davis HL. CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc Natl Acad Sci USA 1998;95:15553–15558.

    Article  PubMed  CAS  Google Scholar 

  94. Weeratna RD, Brazolot Millan CL, McCluskie MJ, Siegrist CA, Davis HL. Priming of immune responses to hepatitis B surface antigen in young mice immunized in the presence of maternally derived antibodies. FEMS Immunol Med Microbiol 2001;30:241–247.

    Article  PubMed  CAS  Google Scholar 

  95. Kovarik J, Bozzotti P, Love-Homan L, et al. CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J Immunol 1999;162:1611–1617.

    PubMed  CAS  Google Scholar 

  96. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu Rev Immunol 1997;15:617–648.

    Article  PubMed  CAS  Google Scholar 

  97. Klinman DM, Yamshchikov G, Ishigatsubo Y. Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 1997;158:3635–3639.

    PubMed  CAS  Google Scholar 

  98. Sato Y, Roman M, Tighe H, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996;273:352–354.

    Article  PubMed  CAS  Google Scholar 

  99. Porter KR, Kochel TJ, Wu SJ, Raviprakash K, Phillips I, Hayes CG. Protective efficacy of a dengue 2 DNA vaccine in mice and the effect of CpG immunostimulatory motifs on antibody responses. Arch Virol 1998;143:997–1003.

    Article  PubMed  CAS  Google Scholar 

  100. Gursel M, Tunca S, Ozkan M, Ozcengiz G, Alaeddinoglu G. Immunoadjuvant action of plasmid DNA in liposomes. Vaccine 1999;17:1376–1383.

    Article  PubMed  CAS  Google Scholar 

  101. Barry ME, Pinto-Gonzalez D, Orson FM, McKenzie GJ, Petry GR, Barry MA. Role of endogenous endonucleases and tissue site in transfection and CpG-medi 108 Krieg and Davis ated immune activation after naked DNA injection. Hum Gene Ther 1999;10:2461–2480.

    Article  PubMed  CAS  Google Scholar 

  102. Biswas S, Ashok MS, Reddy GS, Srinivasan VA, Rangarajan PN. Evaluation of the protective efficacy of rabies DNA vaccine in mice using an intracerebral challenge model. Curr Sci 1999;6:1012–1016.

    Google Scholar 

  103. Vinner L, Nielsen HV, Bryder K, Corbet S, Nielsen C, Fomsgaard A. Gene gun DNA vaccination with Rev-independent synthetic HIV-1 gp160 envelope gene using mammalian codons. Vaccine 1999;17:2166–2175.

    Article  PubMed  CAS  Google Scholar 

  104. Grifantini R, Finco O, Bartolini E, et al. Multi-plasmid DNA vaccination avoids antigenic competition and enhances immunogenicity of a poorly immunogenic plasmid. Eur J Immunol 1998;28:1225–1232.

    Article  PubMed  CAS  Google Scholar 

  105. Lee SW, Sung YC. Immuno-stimulatory effects of bacterial-derived plasmids depend on the nature of the antigen in intramuscular DNA inoculations. Immunology 1998;94:285–289.

    Article  PubMed  CAS  Google Scholar 

  106. Gramzinski RA, Millan CL, Obaldia N, Hoffman SL, Davis HL. Immune response to a hepatitis B DNA vaccine in Aotus monkeys: a comparison of vaccine formulation, route, and method of administration. Mol Med 1998;4:109–118.

    PubMed  CAS  Google Scholar 

  107. Hartl A, Kiesslich J, Weiss R, et al. Isoforms of the major allergen of birch pollen induce different immune responses after genetic immunization. Int Arch Allergy Immunol 1999;120:17–29.

    Article  PubMed  CAS  Google Scholar 

  108. Weeratna R, Brazolot Millan CL, Krieg AM, Davis HL. Reduction of antigen expression from DNA vaccines by coadministered oligodeoxynucleotides. Antisense Nucleic Acid Drug Dev 1998;8:351–356.

    PubMed  CAS  Google Scholar 

  109. Fensterle J, Grode L, Hess J, Kaufmann SH. Effective DNA vaccination against listeriosis by prime/boost inoculation with the gene gun. J Immunol 1999;163:4510–4518.

    PubMed  CAS  Google Scholar 

  110. Oehen S, Junt T, Lopez-Macias C, Kramps TA. Antiviral protection after DNA vaccination is short lived and not enhanced by CpG DNA. Immunology 2000;99:163–169.

    Article  PubMed  CAS  Google Scholar 

  111. Karlin S, Ladunga I, Blaisdell BE. Heterogeneity of genomes: measures and values. Proc Natl Acad Sci USA 1994;91:12837–12841.

    Article  PubMed  CAS  Google Scholar 

  112. Krieg AM. Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. Trends Microbiol 1996;4:73–76.

    Article  PubMed  CAS  Google Scholar 

  113. Shpaer EG, Mullins JI. Selection against CpG dinucleotides in lentiviral genes: a possible role of methylation in regulation of viral expression. Nucleic Acids Res 1990;18:5793–5797.

    Article  PubMed  CAS  Google Scholar 

  114. Han J, Zhu Z, Hsu C, Finley WH. Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence. Antisense Res Dev 1994;4:53–65.

    PubMed  CAS  Google Scholar 

  115. Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines. Vaccine 2000;18:597–603.

    Article  Google Scholar 

  116. Davis HL, Suparto II, Weeratna RR, et al. CpG DNA overcomes hyporesponsiveness to hepatitis B vaccine in orangutans. Vaccine 2000;18:1920–1924.

    Article  PubMed  CAS  Google Scholar 

  117. Mancini M, Hadchouel M, Davis HL, Whalen RG, Tiollais P, Michel ML. DNAmediated immunization in a transgenic mouse model of the hepatitis B surface antigen chronic carrier state. Proc Natl Acad Sci USA 1996;93:12496–12501.

    Article  PubMed  CAS  Google Scholar 

  118. Malanchère-Brès E, Payette PJ, Mancini M, Tiollais P, Davis HL, Michel ML. CpG oligodeoxynucleotides with hepatitis B surface antigen (HBsAg) for vaccination in HBsAg in transgenic mice. J Virol 2001;75:6482–6491.

    Article  PubMed  Google Scholar 

  119. Mancini M, Hadchouel M, Tiollais P, Michel ML. Regulation of hepatitis B virus mRNA expression in a hepatitis B surface antigen transgenic mouse model by IFN-γ-secreting T cells after DNA-based immunization. J Immunol 1998;161:5564–5570.

    PubMed  CAS  Google Scholar 

  120. Miconnet I, Koenig S, Speiser D, et al. CpG are efficient adjuvants for specific CTL induction against tumor antigen-derived peptide. J Immunol 2002;168:1212–1218.

    PubMed  CAS  Google Scholar 

  121. Davila E, Kennedy R, Celis E. Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res 2003;63:3281–3288.

    PubMed  CAS  Google Scholar 

  122. Lubaroff D, personal communication, June 2005.

    Google Scholar 

  123. Sandler AD, Chihara H, Kobayashi G, et al. CpG Oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colonystimulating factor-based vaccine strategy in neuroblastoma. Cancer Res 2003;63:394–399.

    PubMed  CAS  Google Scholar 

  124. Weeratna RD, Davis HL, Medynski L, Krieg AM. Potential use of CpG for cancer immunotherapy. Cancer Chemotherapy and Biological Response Modifiers, Elsevier (in press).

    Google Scholar 

  125. Chagnon F, Tanguay S, Ozdal OL, et al. Potentiation of a dendritic cell vaccine for murine renal cell carcinoma by CpG oligonucleotides. Clin Can Res 2005;11:1302–1311.

    CAS  Google Scholar 

  126. Brunner C, Seiderer J, Schlamp A, et al. Enhanced dendritic cell maturation by TNF-α or cytidine-phosphate-guanosine DNA drives T cell activation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol 2000;165:6278–6286.

    PubMed  CAS  Google Scholar 

  127. Egeter O, Mocikat R, Ghoreschi K, Dieckmann A, Rocken M. Eradication of disseminated lymphomas with CpG-DNA activated T helper type 1 cells from nontransgenic mice. Cancer Res 2000;60:1515–1520.

    PubMed  CAS  Google Scholar 

  128. Campbell MJ, Esserman L, Byars NE, Allison AC, Levy R. Idiotype vaccination against murine B cell lymphoma. Humoral and cellular requirements for the full expression of antitumor immunity. J Immunol 1990;145:1029–1036.

    PubMed  CAS  Google Scholar 

  129. Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM. Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA 1997;94:10833–10837.

    Article  PubMed  CAS  Google Scholar 

  130. Liu HM, Newbrough SE, Bhatia SK, Dahle CE, Krieg AM, Weiner GJ. Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colony-stimulating factor. Blood 1998;92:3730–3736.

    PubMed  CAS  Google Scholar 

  131. Kline JN, Waldschmidt TJ, Businga TR, Lemish JE, Weinstock JV, Thorne PS, Krieg AM. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol 1998;160:2555–2559.

    PubMed  CAS  Google Scholar 

  132. Fredriksen K, Skogsholm A, Flaegstad T, Traavik T, Rekvig OP. Antibodies to dsDNA are produced during primary BK virus infection in man, indicating that anti-dsDNA antibodies may be related to virus replication in vivo. Scand J Immunol 1993;38:401–406.

    Article  PubMed  CAS  Google Scholar 

  133. Krieg AM. Direct immunologic activities of CpG DNA and implications for gene therapy. J Gene Med 1999;1:56–63.

    Article  PubMed  CAS  Google Scholar 

  134. Krieg AM. Minding the Cs and Gs [comment]. Mol Ther 2000;1:209–210.

    Article  PubMed  CAS  Google Scholar 

  135. Glover JM, Leeds JM, Mant TG, et al. Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2 302). J Pharmacol Exp Ther 1997;282:1173–1180.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Krieg, A.M., Davis, H.L. (2006). CpG ODN As a Th1 Immune Enhancer for Prophylactic and Therapeutic Vaccines. In: Hackett, C.J., Harn, D.A. (eds) Vaccine Adjuvants. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59259-970-7_6

Download citation

Publish with us

Policies and ethics