Skip to main content

Mechanism for Recognition of CpG DNA

  • Chapter
Vaccine Adjuvants

Part of the book series: Infectious Disease ((ID))

Abstract

Bacterial deoxyribonucleic acid (DNA) containing cytosine phosphate guanine (CpG ) motifs, but not vertebrate DNA, activates innate immune cells. CpG motifs in vertebrate DNA are suppressed and usually methylated. In contrast, CpG motifs in bacterial DNA are observed at the expected frequency and unmethylated, which causes immune cell activation. CpG DNA activation of immune cells is reproducible in synthetic oligonucleotides containing CpG motifs. Treatment with CpG DNA induces a potent immune response dominated by Th1 cell-mediated cellular immunity, which prevents and cures several infectious and immune diseases in animal models. CpG DNA is therefore promising as a clinically useful agent for the treatment of several human diseases including cancer, allergy, and infectious diseases. The molecular mechanism of CpG DNA-induced cellular activation has been investigated intensively, and a signaling pathway is now being revealed. The critical components that recognize CpG DNA have recently been identified. In this chapter, we focus on the recent advances in the CpG DNA-induced activation of innate immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janeway CA, Jr. Aproaching the asymptote? Evolution and revolution in immunology. Cold Spring Hab Symp Quant Biol 1989;54:1–13.

    CAS  Google Scholar 

  2. Medzhitov R, Janeway CA, Jr. Innate Immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295–298.

    PubMed  CAS  Google Scholar 

  3. Medzhitov R, Janeway CA, Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9:4–9.

    PubMed  CAS  Google Scholar 

  4. Wagner H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 1999;73:329–367.

    PubMed  CAS  Google Scholar 

  5. Krieg AM, Hartmann GH, Yi A-K. Mechanism of action of CpG DNA. Curr Top Microbiol Immunol 2000;247:1–21.

    PubMed  CAS  Google Scholar 

  6. Stacey KJ, Sester DP, Sweet MJ, Hume DA. Macrophage activation by immunostimulatory DNA. Curr Top Microbiol Immunol 2000;247:41–58.

    PubMed  CAS  Google Scholar 

  7. Tokunaga T, Yamamoto H, Shimada S, et al. Antitumor activity of deoxyribonucleic acid fraction from mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. J Natl Cancer Inst 1984;72:955–962.

    PubMed  CAS  Google Scholar 

  8. Yamamoto S, Kuramoto E, Shimada S, Tokunaga T. In vitro augmentation of natural killer cell activity and production of interferon-α/β and-⋙ with deoxyribonucleic acid fraction from mycobacterium bovis BCG. Jpn J Cancer Res 1988;79:866–873.

    PubMed  CAS  Google Scholar 

  9. Kuramoto E, Yano O, Kimura Y, et al. Oligonucleotide sequences required for natural killer cell activation. Jpn J Cancer Res 1992;83:1128–1131.

    PubMed  CAS  Google Scholar 

  10. Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T. Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment INF-mediated natural killer cells activity. J Immunol 1992;148:4072–4076.

    PubMed  CAS  Google Scholar 

  11. Krieg AM, Yi A-K, Matson S, et al. CpG motifs in bacterial DNA trigger direct B cell activation. Nature 1995;374:546–549.

    PubMed  CAS  Google Scholar 

  12. Sparwasser T, Miethke T, Lipford G, et al. Bacterial DNA causes septic shock. Nature 1997;386:336–337.

    PubMed  CAS  Google Scholar 

  13. Sparwasser T, Miethke T, Lipford G, et al. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-α-mediated shock. Eur J Immunol 1997;27:1671–1679.

    PubMed  CAS  Google Scholar 

  14. Bird AP. Functions for DNA methylation in vertebrates. Cold Spring Harb Symp Quant Biol 1993;58:281–284.

    PubMed  CAS  Google Scholar 

  15. Gurunathan S, Klinman D, Sedar RA. DNA vaccines: immunology, application and optimization. Annu Rev Immunol 2000;18:927–974.

    PubMed  CAS  Google Scholar 

  16. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465–1468.

    PubMed  CAS  Google Scholar 

  17. Tang DC, de Vit M, Johnston SA. Genetic immunization is a simple method for eliciting an immune response. Nature 1992;356:152–154.

    PubMed  CAS  Google Scholar 

  18. Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993;259:1745–1749.

    PubMed  CAS  Google Scholar 

  19. Sedegah M, Hedstrom R, Hobart P, Hoffman SL. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci USA 1994;91:9866–9870.

    PubMed  CAS  Google Scholar 

  20. Boyer JD, Ugen KE, Wang B, et al. Protection of chimpanzees from high-dose heterologous HIV-1 challenge by DNA vaccination. Nat Med 1997;3:526–532.

    PubMed  CAS  Google Scholar 

  21. Xu L, Sanchez A, Yang Z, et al. Immunization for Ebola virus infection. Nat Med 1998;4:37–42.

    PubMed  CAS  Google Scholar 

  22. Lowrie DB, Silva CL, Colston MJ, Ragno S, Tascon RE. Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 1997;15:834–838.

    PubMed  CAS  Google Scholar 

  23. Gurunathan S, Sacks DL, Brown DR, et al. Vaccination with DNA encoding the immnodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J Exp Med 1997;186:1137–1147.

    PubMed  CAS  Google Scholar 

  24. Wang R, Doolan DL, Le TP, et al. Induction of antigen specific cytotoxic T lymphocytes in humans by a malaria vaccine DNA. Science 1998;282:476–480.

    PubMed  CAS  Google Scholar 

  25. Calarota S, Bratt G, Nordlund S, et al. Cellular cytotoxic response induced by DNA vaccination in HIV-I infected patients. Lancet 1998;351:1320–1325.

    PubMed  CAS  Google Scholar 

  26. Gurunathan S, Wu C-Y, Freidag BL, Sedar RA. Vaccine DNA, a key for inducing long term cellular immunity. Curr Opin Immunol 2000;12:442–447.

    PubMed  CAS  Google Scholar 

  27. Elkins KL, Rhinehart-Jones TR, Stibitz S, Conover JS, Klinman DM. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J Immunol 1999;162:2291–2298.

    PubMed  CAS  Google Scholar 

  28. Krieg AM, Love-Homan L, Yi A-K, Harty JT. CpG DNA induces sustained IL-12, expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 1998;161:2428–2434.

    PubMed  CAS  Google Scholar 

  29. Zimmermann S, Egeter O, Hausmann S, et al. CpG oligodeoxynucleotides trigger protective and curative Th1, responses in lethal murine leishmaniasis. J Immunol 1998;160:3627–3630.

    PubMed  CAS  Google Scholar 

  30. Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997;3:849–854.

    PubMed  CAS  Google Scholar 

  31. Lipford GB, Bauer M, Blank C, Reiter R, Wagner H, Heeg, K. CpG-containing synthetic oligonucleotides promote B and cytotoxic T cell responses to protein antigen: a new class of vaccine adjuvants. Eur J Immunol 1997;27:2340–2344.

    PubMed  CAS  Google Scholar 

  32. McCluskie MJ, Davis HL. CpG DNA is a potent enhancer of systemic and mucosal immune responses against hepatitis B surface antigen with intranasal administration to mice. J Immunol 1998;161:4463–4466.

    PubMed  CAS  Google Scholar 

  33. Manders P, Thomas, R. Immunology of vaccines DNA, CpG motifs and antigen presentation. Inflamm Res 2000;49:199–205.

    PubMed  CAS  Google Scholar 

  34. Sato Y, Roman M, Tighe H, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996;273:352–354.

    PubMed  CAS  Google Scholar 

  35. Klinman DM, Yamshchikov G, Ishigatsubo Y. Contribution of CpG motifs to the immunogenicity of vaccines DNA. J Immunol 1997;158:3635–3642.

    PubMed  CAS  Google Scholar 

  36. Klinman DM, Barnhart KM, Conover J. CpG motifs as immune adjuvants. Vaccine 1999;17:19–25.

    PubMed  CAS  Google Scholar 

  37. Klinman DM, Verthelyi D, Takeshita F, Ishii KJ. Immune recognition of foreign DNA: a cure of bioterrorism? Immunity 1999;11:123–129.

    PubMed  CAS  Google Scholar 

  38. Sparwasser T, Koch ES, Vabulas RM, et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998;28,2045–2054.

    PubMed  CAS  Google Scholar 

  39. Jakob T, Walker PS, Krieg AM, Udey MC, Vogel JC. Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1, responses by immunostimulatory DNA. J Immunol 1998;161:3042–3049.

    PubMed  CAS  Google Scholar 

  40. Hartmann G, Weiner GJ, Krieg AM. CpDNA G, a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci USA 1999;96:9305–9310.

    PubMed  CAS  Google Scholar 

  41. Hacker H. Signal transduction pathways activated by CpG-Curr DNA. Top Microbial Immunol 2000;247:77–921.

    CAS  Google Scholar 

  42. Yamamoto T, Yamamoto S, Kataoka T, Tokunaga T. Lipofection of synthetic oligodeoxyribonucleotide having a palindromic sequence of AACGTT to murine splenocytes enhances interferon production and natural killer activity. Microbiol Immunol 1994;38:831–836.

    PubMed  CAS  Google Scholar 

  43. Kimua Y, Sonehara K, Kuramoto E, et al. Binding of oligoguanylate to scavenger receptors is required for oligonucleotides to augment NK cell activity and induce IFN. J Biochem 1994;116:991–994.

    Google Scholar 

  44. Hacker H, Mischak H, Miethke T, et al. CpG-DNA-specific activation of antigenpresenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO J 1998;17:6230–6240.

    PubMed  CAS  Google Scholar 

  45. Benimetskaya L, Loike JD, Khaled Z, et al. Mac-1, (CD11b/CD18) is an oligodeoxynucleotide-binding protein. Nature Med 1997;3:414–420.

    PubMed  CAS  Google Scholar 

  46. Tonkinson JL, Stein CA. Patterns of intracellular compartmentalization, trafficking and acidification of 5’-fluorescein labeled phophodiester and phosphorothioate oligodeoxynucleotides in HL60, cells. Nucleic Acids Res 1994;22:4268–4275.

    PubMed  CAS  Google Scholar 

  47. Ohkuma S, Poole B. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J Cell Biol 1981;90:656–664.

    PubMed  CAS  Google Scholar 

  48. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 1991;266:17707–17712.

    PubMed  CAS  Google Scholar 

  49. MacFarlane DE, Manzel L. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds. J Immunol 1998;160:1122–1131.

    PubMed  CAS  Google Scholar 

  50. Yi A-K, Tuetken R, Redford T, Waldschmidt M, Kirsch J, Krieg AM. CpG motifs in bacterial DNA activates leukocytes through the pH-dependent generation of reactive oxygens species. J Immunol 1998;160:4755–4761.

    PubMed  CAS  Google Scholar 

  51. Yi A-K, Krieg AM. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol 1998;161:4493–4497.

    PubMed  CAS  Google Scholar 

  52. Hacker H, Mischak H, Hacker G, et al. Cell type-specific activation of mitogenactivated protein kinases by CpG-DNA controls interleukin-12, release from antigen-presenting cells. EMBO J 1999;18:6973–3982.

    PubMed  CAS  Google Scholar 

  53. Stacey KJ, Sweet M, Hume DA. Macrophages ingest and are activated by bacterial DNA. J Immunol 1996;157:2116–2122.

    PubMed  CAS  Google Scholar 

  54. Hoffmann JA, Kafatos FC, Janeway CA Jr, Ezekowiz BRA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313–1318.

    PubMed  CAS  Google Scholar 

  55. Lemaitre B, Nicolas E, Michaut L, Reichhart, J-M, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973–983.

    PubMed  CAS  Google Scholar 

  56. Williams MJ, Rodriguez A, Kimbrell DA, Eldon ED. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J 1997;16:6120–6130.

    PubMed  CAS  Google Scholar 

  57. Tauszig S, Jouanguy E, Hoffmann JA, Imler J-L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci USA 2000;97:10520–10525.

    PubMed  CAS  Google Scholar 

  58. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homlogue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394–397.

    PubMed  CAS  Google Scholar 

  59. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 1998;95:588–593.

    PubMed  CAS  Google Scholar 

  60. Takeuchi O, Kawai T, Sanjo H, et al. TLR6: a novel member of an expanding toll-like receptor family. Gene 1999;231:59–65.

    PubMed  CAS  Google Scholar 

  61. Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 2000;11:362–371.

    PubMed  CAS  Google Scholar 

  62. Chuang, T-H, Ulevitch RJ. Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8, and hTLR9. Eur Cytokine Netw 2000;11:372–378.

    PubMed  CAS  Google Scholar 

  63. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutation in Tlr4, gene. Science 1998;282:2085–2088.

    PubMed  CAS  Google Scholar 

  64. Qureshi ST, Lariviere L, Leveque G, et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 1999;189:615–625.

    PubMed  CAS  Google Scholar 

  65. Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4, as the Lps hene product. J Immunol 1999;162:3749–3752.

    PubMed  CAS  Google Scholar 

  66. Yang R-B, Mark MR, Gray A, et al. Toll-like receptor-2, mediates lipopolysaccharide-induced cellular signalling. Nature 1998;395:284–288.

    PubMed  CAS  Google Scholar 

  67. Kirschning CJ, Wesche H, Ayres TM, Rothe M. Human Toll-like receptor 2, confers responsiveness to bacterial lipopolysaccharide. Exp J Med 1998;188:2091–2097.

    CAS  Google Scholar 

  68. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2, and TLR4, in recognition of Gram-negative and Gram-positive cell wall components. Immunity 1999;11:443–451.

    PubMed  CAS  Google Scholar 

  69. Heine H, Kirschning CJ, Lien E, Monks BG, Rothe M, Golenbock DT. Cutting edge: Cell that carry a null mutation for Toll-like receptor 2, are capable for responding to endotoxin. J Immunol 1999;162:6971–6975.

    PubMed  CAS  Google Scholar 

  70. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine Tolllike receptor 2. J Immunol 2000;165:618–622.

    PubMed  CAS  Google Scholar 

  71. Tapping RI, Akashi S, Miyake K, Godowski PJ, Tobias RS. Toll-like receptor 4, bit not Toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J Immunol 2000;165:5780–5787.

    PubMed  CAS  Google Scholar 

  72. Schwadner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycanand lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999;274:17406–17409.

    Google Scholar 

  73. Aliprantis AO, Yang R-B, Mark MR, et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor 2. Science 1999;285:736–739.

    PubMed  CAS  Google Scholar 

  74. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock, D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999;165:1–5.

    Google Scholar 

  75. Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 1999;285:732–736.

    PubMed  CAS  Google Scholar 

  76. Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 1999;163:3920–3927.

    PubMed  CAS  Google Scholar 

  77. Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor 2, mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 1999;96:14459–14463.

    PubMed  CAS  Google Scholar 

  78. Hirschfeld M, Kirschning CJ, Schwandner R, et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2. J Immunol 1999;163:2382–2386.

    PubMed  CAS  Google Scholar 

  79. Underhill DM, Ozinsky A, Hajjar AM, et al. The Toll-like receptor 2, is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999;401:811–815.

    PubMed  CAS  Google Scholar 

  80. Takeuchi O, Kaufmann A, Grote K, et al. Cutting edge: preferentially the R-steroisomer of the Mycoplasmal lipopeptide macrophage-activating lipopeptide-2, activates immune cells through a Toll-like receptor 2-and MyD88-dependent signaling pathway. J Immunol 2000;164:554–557.

    PubMed  CAS  Google Scholar 

  81. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 2000;165:5392–5396.

    PubMed  CAS  Google Scholar 

  82. Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 2000;97:13766–13771.

    PubMed  CAS  Google Scholar 

  83. Wyllie DH, Kiss-Toth E, Visintin A, et al. Evidence for an accessory protein function for Toll-like receptor 1, in anti-bacterial responses. J Immunol 2000;165:7125–7132.

    PubMed  CAS  Google Scholar 

  84. Hajjar AM, O’Mahony DS, Ozinsky A, et al. Cutting edge: functional interactions between Toll-like receptor (TLR) 2, and TLR1, or TLR6, in response to phenol-soluble modulin. J Immunol 2001;166:15–19.

    PubMed  CAS  Google Scholar 

  85. Takeuchi O, Kawai T, Muhlradt PF, et al. Discrimination of bacterial lipopeptides by Toll-like receptor 6. Int Immunol 2001;13:933–940.

    PubMed  CAS  Google Scholar 

  86. Medzhitov R, Janeway CA Jr. Innate immunity. N Engl J Med 2000;343:338–344.

    PubMed  CAS  Google Scholar 

  87. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune responses. Nature 2000;406:782–787.

    PubMed  CAS  Google Scholar 

  88. Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2, and MyD88, as proximal mediators of IL-1, signaling. Science 1997;278,1612–1615.

    PubMed  CAS  Google Scholar 

  89. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adaptor protein that recruits IRAK to the IL-1, receptor complex. Immunity 1997;7:837–847.

    PubMed  CAS  Google Scholar 

  90. Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A. The human toll signaling pathway: divergence of nuclear factor kB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 1998;187:2097–2101.

    PubMed  CAS  Google Scholar 

  91. Burnsm K, Martinon F, Esslinger C, et al. MyD88, an adaptor protein involved in interleukin-1, signaling. J Biol Chem 1998;273:12203–12209.

    Google Scholar 

  92. Medzhitov R, Preston-Hurlburt P, Kopp E, et al. MyD88, is an adaptor protein in the hToll/IL-1, receptor family signaling pathways. Moll Cell 1998;2:253–258.

    CAS  Google Scholar 

  93. Adachi O, Kawai T, Takeda K, et al. Targeted disruption of the MyD88, gene results in loss of IL-1-and IL-18-mediated function. Immunity 1998;9:143–150.

    PubMed  CAS  Google Scholar 

  94. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999;11:115–122.

    PubMed  CAS  Google Scholar 

  95. Takeuchi O, Takeda K, Hoshino K, Adachi O, Ogawa T, Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol 2000;12:113–117.

    CAS  Google Scholar 

  96. Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88, and tumor necrosis factor receptor-associated factor (TRAF) 6. J Exp Med 2000;192:595–600.

    PubMed  CAS  Google Scholar 

  97. Schnare M, Holt AC, Takeda K, Akira S, Medzhitov R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr Biol 2000;10:1139–1142.

    PubMed  CAS  Google Scholar 

  98. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–745.

    PubMed  CAS  Google Scholar 

  99. Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999;189:1777–1782.

    PubMed  CAS  Google Scholar 

  100. Yang R-B, Mark MR, Gurney AL, Godowski PJ. Signaling events induced by lipopolysaccharide-activated Toll-like receptor 2. J Immunol 1999;163:639–643.

    PubMed  CAS  Google Scholar 

  101. Akashi S, Shimazu R, Ogata H, et al. Cutting edge: cell surface expression and lipo-plysaccharide signaling via the Toll-like receptor 4-MD-2, complex on mouse peritoneal macrophages. J Immunol 2000;164:3471–3475.

    PubMed  CAS  Google Scholar 

  102. Nomura F, Akashi S, Sakao Y, et al. Endotoxin tolerance in mouse peritoneal macrophages correlates with downregulation of surface Toll-like receptor 4 expression. J Immunol 2000;164:3476–3479.

    PubMed  CAS  Google Scholar 

  103. Chu W-M, Gong X, Li Z-W, et al. DNA-PKcs is required for activation of innate immunity by immunostimulatory DNA Cell 2000;103:909–918.

    PubMed  CAS  Google Scholar 

  104. Gottlieb TM, Jackson SP. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 1993;72:131–142.

    PubMed  CAS  Google Scholar 

  105. Hartley KO, Gell D, Smith GC, et al. DNA-dependent proein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and ataxia telangiectasia gene product. Cell 1995;82:849–856.

    PubMed  CAS  Google Scholar 

  106. Kirchgessner CU, Patil CK, Evans JW, et al. DNA-dependent proteins kinase (p350) as a candidate gene for the murine defect CID. Science 1995;267:1178–1183.

    PubMed  CAS  Google Scholar 

  107. Chace JH, Hooker NA, Mildenstein KL, Krieg AM, Cowdery JS. Bacterial DNAinduced NK cell IFN-γ production is dependent on macrophage secretion of IL-12. Clin Immunol Immunopathol 1997;84:185–193.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Takeda, K., Hemmi, H., Akira, S. (2006). Mechanism for Recognition of CpG DNA. In: Hackett, C.J., Harn, D.A. (eds) Vaccine Adjuvants. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59259-970-7_5

Download citation

Publish with us

Policies and ethics