Skip to main content

Adjuvants and the Initiation of T-Cell Responses

  • Chapter
Vaccine Adjuvants

Part of the book series: Infectious Disease ((ID))

Abstract

Despite extensive study and use of adjuvants that promote initiation of T-cell responses, we are only now beginning to understand the mechanistic basis for the adjuvant effect. This rapidly increasing understanding is a result of several factors including advances in our fundamental understanding of the requirements of T-cell activation, a developing appreciation of the importance of innate immunity in T-cell activation, and realization that dendritic cells (DCs) play the central role as antigen-presenting cells (APCs) to activate T cells. Furthermore, previous studies of adjuvants were largely empirical although new approaches are allowing much more detailed and quantitative studies of the in vivo activation of antigen (Ag)-specific T cells. Impetus for studying the mechanisms by which adjuvants influence T-cell responses is provided by their tremendous importance in developing vaccination strategies to prevent and treat diseases. In addition to the classical adjuvant formulations, most of which include bacterial cell wall components, numerous other substances with adjuvant effects have been described and the list continues to grow. The ability to activate DCs and induce production of inflammatory cytokines is emerging as a critical feature shared by most if not all adjuvants, and recent studies are beginning to suggest ways in which these cytokines contribute to T-cell proliferation and differentiation. This chapter examines the requirements for effective activation of T-cell responses and discusses how adjuvants and their effects on DCs can or might contribute at each stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kearney E, Pape K, Loh D, Jenkins M. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1994;1:327–339.

    Article  PubMed  CAS  Google Scholar 

  2. Pape K, Kearney E, Khoruts A, et al. Use of adoptive transfer of T-cell antigenreceptor-transgenic T cell for the study of T-cell activation in vivo. Immunol Rev 1997;156:67–78.

    Article  PubMed  CAS  Google Scholar 

  3. Rogers WO, Weaver CT, Kraus LA, Li J, Li L, Bucy RP. Visualization of antigenspecific T cell activation and cytokine expression in vivo. J Immunol 1997;158:649–657.

    PubMed  CAS  Google Scholar 

  4. Altman JD, Moss PAH, Goulder PJR, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996;274:94–96.

    Article  PubMed  CAS  Google Scholar 

  5. Kozono H, White J, Clements J, Marrack P, Kappler J. Production of soluble MHC class II proteins with covalently bound single peptides. Nature 1994;369:151–154.

    Article  PubMed  CAS  Google Scholar 

  6. O’Herrin SM, Lebowitz MS, Bieler JG, et al. Analysis of the expression of peptide-major histocompatibility complexes using high affinity soluble divalent T cell receptors. J Exp Med 1997;186:1333–1345.

    Article  PubMed  CAS  Google Scholar 

  7. Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989;54:1–13.

    PubMed  CAS  Google Scholar 

  8. Dresser DW. Effectiveness of lipid and lipidophilic substances as adjuvants. Nature 1961;191:1169–1171.

    Article  PubMed  CAS  Google Scholar 

  9. Dresser DW. Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology 1962;5:378–388.

    PubMed  CAS  Google Scholar 

  10. Pape KA, Khoruts A, Mondino A, Jenkins MK. Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells. J Immunol 1997;159:591–598.

    PubMed  CAS  Google Scholar 

  11. Schmidt CS, Mescher MF. Adjuvant effect of IL-12: conversion of peptide antigen administration from tolerizing to immunizing for CD8+ T cells in vivo. J Immunol 1999;163:2561–2567.

    PubMed  CAS  Google Scholar 

  12. Kyburz D, Aichele P, Speiser D, Hengartner H, Zinkernagel R, Pircher H. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur J Immunol 1993;23:1956–1962.

    Article  PubMed  CAS  Google Scholar 

  13. Jennings R, Simms JR, Heath AW. Adjuvants and delivery systems for viral vaccines—mechanisms and potential. Dev Biol Stand 1998;92:19–28.

    PubMed  CAS  Google Scholar 

  14. van der Heijden PJ, Bokhout BA, Bianchi AT, Scholten JW, Stok W. Separate application of adjuvant and antigen: the effect of a water-in-oil emulsion on the splenic plaque-forming cell response to sheep red blood cells in mice. Immunobiology 1986;171:143–154.

    PubMed  Google Scholar 

  15. Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 1975;53:27–42.

    Article  PubMed  CAS  Google Scholar 

  16. Allison JP. CD28-B7 interactions in T cell activation. Curr Opin Immunol 1994;6:414–419.

    Article  PubMed  CAS  Google Scholar 

  17. Janeway CA, Bottomly K. Signals and signs for lymphocyte responses. Cell 1994;76:275–285.

    Article  PubMed  CAS  Google Scholar 

  18. Jenkins MK, Johnson JG. Molecules involved in T-cell costimulation. Curr Opin Immunol 1993;5:361–367.

    Article  PubMed  CAS  Google Scholar 

  19. Lafferty KJ, Prowse SJ, Simeonovic CJ, Warren HS. Immunobiology of tissue transplantation: a return to the passenger leukocyte concept. Annu Rev Immunol 1983;1:143–173.

    Article  PubMed  CAS  Google Scholar 

  20. Mueller D, Jenkins M, Schwartz R. Clonal expansion vs functional clonal inactivation. Annu Rev Immunol 1989;7:445–480.

    PubMed  CAS  Google Scholar 

  21. Albert ML, Jegathesan M, Darnell RB. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat Immunol 2001;2:1010–1017.

    Article  PubMed  CAS  Google Scholar 

  22. Curtsinger JM, Schmidt CS, Mondino A, et al. Inflammatory cytokines provide third signals for activation of naive CD4+ and CD8+ T cells. J Immunol 1999;162:3256–3262.

    PubMed  CAS  Google Scholar 

  23. Hernandez J, Aung S, Marquardt K, Sherman LA. Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens. J Exp Med 2002;196:323–333.

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt CS, Mescher MF. Peptide Ag priming of naive, but not memory, CD8 T cells requires a third signal that can be provided by IL-2. J Immunol 2002;168:5521–5529.

    PubMed  CAS  Google Scholar 

  25. Jenkins M, Schwartz R. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med 1987;165:302–319.

    Article  PubMed  CAS  Google Scholar 

  26. Watts TH, DeBenedette MA. T cell co-stimulatory molecules other than CD28. Curr Opin Immunol 1999;11:286–293.

    Article  PubMed  CAS  Google Scholar 

  27. Deeths MJ, Mescher MF. ICAM-1 and B7-1 provide similar but distinct costimulation for CD8+ T cells, while CD4+ T cells are poorly costimulated by ICAM-1. Eur J Immunol 1999;29:45–53.

    Article  PubMed  CAS  Google Scholar 

  28. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 2001;15:445–455.

    Article  PubMed  CAS  Google Scholar 

  29. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002;2:116–126.

    Article  PubMed  CAS  Google Scholar 

  30. Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Ann Rev Immunol 1995;13:251–276.

    Article  CAS  Google Scholar 

  31. Lee P, Wang F, Kuniyoshi J, et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 2001;19:3836–3847.

    PubMed  CAS  Google Scholar 

  32. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Cutting edge: type I interferons provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 2005;174:4465–4469.

    PubMed  CAS  Google Scholar 

  33. Brouckaert P, Libert C, Everaerdt B, Takahashi N, Cauwels A, Fiers W. Tumor necrosis factor, its receptors and the connection with interleukin 1 and interleukin. Immunobiology 1993;187:317.

    PubMed  CAS  Google Scholar 

  34. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973–983.

    Article  PubMed  CAS  Google Scholar 

  35. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394–397.

    Article  PubMed  CAS  Google Scholar 

  36. Medzhitov R. Toll-like receptors and innate immunity. Nature Rev Immunol 2001;1:135–145.

    Article  CAS  Google Scholar 

  37. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature 2000;406:782–787.

    Article  PubMed  CAS  Google Scholar 

  38. Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 2002;1589:1–13.

    Article  PubMed  CAS  Google Scholar 

  39. Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001;106:259–262.

    Article  PubMed  CAS  Google Scholar 

  40. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nature Rev Immunol 2002;2:151–161.

    Article  CAS  Google Scholar 

  41. Ito T, Amakawa R, Kaisho T, et al. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 2002;195:1507–1512.

    Article  PubMed  CAS  Google Scholar 

  42. Henri S, Vremec D, Kamath A, et al. The dendritic cell populations of mouse lymph nodes. J Immunol 2001;167:741–748.

    PubMed  CAS  Google Scholar 

  43. Nakano H, Yanagita M, Gunn MD. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001;194:1171–1178.

    Article  PubMed  CAS  Google Scholar 

  44. Ruedl C, Koebel P, Bachmann M, Hess M, Karjalainen K. Anatomical origin of dendritic cells determines their life span in peripheral lymph nodes. J Immunol 2000;165:4910–4916.

    PubMed  CAS  Google Scholar 

  45. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–252.

    Article  PubMed  CAS  Google Scholar 

  46. Sallusto F, Lanzavecchia A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 2000;177:134–140.

    Article  PubMed  CAS  Google Scholar 

  47. Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001;106:255–258.

    Article  PubMed  CAS  Google Scholar 

  48. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997;388:782–787.

    Article  PubMed  CAS  Google Scholar 

  49. Epperson DE, Arnold D, Spies T, Cresswell P, Pober JS, Johnson DR. Cytokines increase transporter in antigen processing-1 expression more rapidly than HLA class I expression in endothelial cells. J Immunol 1992;149:3297–3301.

    PubMed  CAS  Google Scholar 

  50. De Smedt T, Pajak B, Muraille E, et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med 1996;184:1413–1424.

    Article  PubMed  Google Scholar 

  51. Khoruts A, Mondino A, Pape KA, Reiner SL, Jenkins M. A natural immunological adjuvant enhances T cell clonal expansion through a CD28-dependent, IL-2-independent mechanism. J Exp Med 1998;187:225–236.

    Article  PubMed  CAS  Google Scholar 

  52. Kneitz B, Herrmann T, Yonehara S, Schimpl A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur J Immunol 1995;25:2572–2577.

    Article  PubMed  CAS  Google Scholar 

  53. Leung DT, Morefield S, Willerford DM. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo. J Immunol 2000;164:3527–3534.

    PubMed  CAS  Google Scholar 

  54. Lantz O, Grandjean I, Matzinger P, Di Santo JP. Gamma chain required for naive CD4+ T cell survival but not for antigen proliferation. Nat Immunol 2000;1:54–58.

    Article  PubMed  CAS  Google Scholar 

  55. D’Souza WN, Schluns KS, Masopust D, Lefrancois L. Essential role for IL-2 in the regulation of antiviral extralymphoid CD8 T cell responses. J Immunol 2002;168:5566–5572.

    PubMed  CAS  Google Scholar 

  56. Kamath AT, Pooley J, O’Keeffe MA, et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 2000;165:6762–6770.

    PubMed  CAS  Google Scholar 

  57. Vremec D, Pooley J, Hochrein H, Wu L, Shortman K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 2000;164:2978–2986.

    PubMed  CAS  Google Scholar 

  58. Pooley JL, Heath WR, Shortman K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8? dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 2001;166:5327–5330.

    PubMed  CAS  Google Scholar 

  59. Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001;19:47–64.

    Article  PubMed  CAS  Google Scholar 

  60. Maldonado-Lopez R, De Smedt T, Michel P, et al. CD8alpha+ and CD8alpha? subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999;189:587–592.

    Article  PubMed  CAS  Google Scholar 

  61. Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O’Keeffe M. Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 2001;166:5448–5455.

    PubMed  CAS  Google Scholar 

  62. Mitchell T, Kappler J, Marrack P. Bystander virus infection prolongs activated T cell survival. J Immunol 1999;162:4527–4535.

    PubMed  CAS  Google Scholar 

  63. Vella AT, Mitchell T, Groth B, et al. CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J Immunol 1997;158:4714–4720.

    PubMed  CAS  Google Scholar 

  64. Mitchell TC, Hildeman D, Kedl RM, et al. Immunological adjuvantsd promote activated T cell survival via induction of Bcl-3. Nat Immunol 2001;2:397–402.

    PubMed  CAS  Google Scholar 

  65. Valenzuela JO, Hammerbeck C, Mescher MF. Cutting edge: Bcl-3 upregulation by signal 3 cytokine (IL-12) prolongs survival of Ag-activated CD8 T cells. J Immunol 2005;174:600–604.

    PubMed  CAS  Google Scholar 

  66. Mattei F, Schiavoni G, Belardelli F, Tough DF. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 2001;167:1179–1187.

    PubMed  CAS  Google Scholar 

  67. Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 2000;288:675–678.

    Article  PubMed  CAS  Google Scholar 

  68. Sprent J, Surh CD. Generation and maintenance of memory T cells. Curr Opin Immunol 2001;13:248–254.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998;8:591–599.

    Article  PubMed  CAS  Google Scholar 

  70. Schluns KS, Williams K, Ma, A, Zheng XX, Lefrancois, L. Cutting edge: requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 2002;168:4827–4831.

    PubMed  CAS  Google Scholar 

  71. Antia R, Pilyugin SS, Ahmed R. Models of immune memory: on the role of crossreactive stimulation, competition, and homeostasis in maintaining immune memory. Proc Natl Acad Sci USA 1998;95:14926–14931.

    Article  PubMed  CAS  Google Scholar 

  72. Homann D, Teyton L, Oldstone MB. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med 2001;7:913–919.

    Article  PubMed  CAS  Google Scholar 

  73. Pape KA, Merica R, Mondino A, Khoruts A, Jenkins MK. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J Immunol 1998;160:4719–4729.

    PubMed  CAS  Google Scholar 

  74. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature 2001;410:101–105.

    Article  PubMed  CAS  Google Scholar 

  75. Murphy KM, Ouyang W, Farrar JD, et al. Signaling and transcription in T helper development. Annu Rev Immunol 2000;18:451–494.

    Article  PubMed  CAS  Google Scholar 

  76. Bird JJ, Brown DR, Mullen AC, et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 1998;9:229–237.

    Article  PubMed  CAS  Google Scholar 

  77. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell 2001;106:271–274.

    Article  PubMed  CAS  Google Scholar 

  78. Grewal I, Flavell R. CD40 and CD154 in cell-mediated immunity. Ann Rev Immunol 1998;16:111–135.

    Article  CAS  Google Scholar 

  79. Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993;177:925–935.

    Article  PubMed  CAS  Google Scholar 

  80. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD 40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996;184:747–752.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Mescher, M.F., Curtsinger, J.M., Jenkins, M. (2006). Adjuvants and the Initiation of T-Cell Responses. In: Hackett, C.J., Harn, D.A. (eds) Vaccine Adjuvants. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59259-970-7_4

Download citation

Publish with us

Policies and ethics