Skip to main content

Dendritic Cells

Targets for Immune Modulation by Microbes and Immunologists

  • Chapter
Vaccine Adjuvants

Part of the book series: Infectious Disease ((ID))

  • 1012 Accesses

Abstract

Since the original description of Th1 and Th2 T cells by Mosman and Coffman some 15 years ago (1), there has been a profusion of knowledge about the cytokines that influence the type of Th response. Thus, interleukin 4 (IL)-4 is known to induce IL-4 production in T cells; conversely IL-12 and interferon (IFN)γ are known to induce IFNγ production by T cells. However, the original sources of these cytokines in vivo, and the mechanisms that initiate one or another response, are less clear. Recent developments from several labs point to a potential role for dendritic cells (DCs) in orchestrating this decision. Here, we present our current view of DC development in vivo and then review the literature that suggest that distinct DC subsets may direct Th responses differently. These ideas are discussed in the context that the Th polarizing potentials of DC subsets are not fixed, but are rather plastic. Given their pivotal roles in immunity, DCs represent prime targets for immune modulation by both microbes, and immunologists. Some examples of immune modulation by microbes, and prospects for clinical utility are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989;7:145–173.

    Article  PubMed  CAS  Google Scholar 

  2. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142–1162.

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245–252.

    Article  PubMed  CAS  Google Scholar 

  4. Shortman K, Liu Y-J. Mouse and human dendritic cell subtypes. Nature Rev Immunol 2002;2:151–161.

    Article  CAS  Google Scholar 

  5. Pulendran B, Maraskovsky E, Banchereau J, Maliszewski C. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol 2001;22:41–47.

    Article  PubMed  CAS  Google Scholar 

  6. Pulendran B, Smith JL, Caspary G, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 1999;96:1036–1041.

    Article  PubMed  CAS  Google Scholar 

  7. Maldonado-Lopez R, De Smedt T, Michel P, et al. CD8alpha+ and CD8alpha-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999;189:587–592.

    Article  PubMed  CAS  Google Scholar 

  8. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation [see comments]. Science 1999;283:1183–1186.

    Article  PubMed  CAS  Google Scholar 

  9. Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001;293:253–256.

    Article  PubMed  CAS  Google Scholar 

  10. Lanzavecchia A, Sallusto F. Regulation of T-cell immunity by dendritic cells. Cell 2001;106:263–266.

    Article  PubMed  CAS  Google Scholar 

  11. Kalinski P, Hikens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999;20:561–567.

    Article  PubMed  CAS  Google Scholar 

  12. Valladeau J, Ravel O, Dezulter-Dambuyant C, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 2000;12:71–81.

    Article  PubMed  CAS  Google Scholar 

  13. Asselin-Paturel C, Boonstra A, Dalod M, et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nature Immunol 2001;2:1144–1150.

    Article  CAS  Google Scholar 

  14. Nakano H, Yanagita M, Gunn MD. CD11c+ B220+ Gr-1+ cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001;194:1171–1178.

    Article  PubMed  CAS  Google Scholar 

  15. Bjorck P. Isolation and characterization of plasmacytoid dendritic cells from Flt3-Ligand and granulocyte-macrophage colony stimulating factor treated mice. Blood 2001;98:3520–3526.

    Article  PubMed  CAS  Google Scholar 

  16. Ardavin C, Wu L, Li CL, Shortman K. Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 1993;362:761–763.

    Article  PubMed  CAS  Google Scholar 

  17. del Hoyo GM, Martin P, Vargas HH, Ruiz S, Arias CF, Ardavin C. Characterization of a common precursor population for dendritic cells. Nature 2002;415:1043–1047.

    Article  PubMed  Google Scholar 

  18. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ. The enigmatic plasmacytoid T-cells develop into dendritic cells with interleukin-3 (IL)-3 and CD40-ligand. J Exp Med 1996;184:1101–1111.

    Article  Google Scholar 

  19. Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principle type 1 interferon-producing cells in human blood. Science 1999;284:1835–1837.

    Article  PubMed  CAS  Google Scholar 

  20. Cella M, Jarrossay D, Facchett F, et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type-1 interferon. Nat Med 1999;5:919–923.

    Article  PubMed  CAS  Google Scholar 

  21. Maraskovsky E, Brasel K, Teepe M, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 1996;184:1953–1962.

    Article  PubMed  CAS  Google Scholar 

  22. Pulendran B, Lingappa J, Kennedy MK, et al. Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol 1997;159:2222–2231.

    PubMed  CAS  Google Scholar 

  23. Shurin MR, Pandharipande PP, Zorina TD, et al. FLT3 ligand induces the generation of functionally active dendritic cells in mice. Cell Immunol 1997;179:174–184.

    Article  PubMed  CAS  Google Scholar 

  24. Pulendran B, Smith JL, Jenkins M, Schoenborn M, Maroskovsky E, Maliszeski CR. Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med 1998;188:2075–2082.

    Article  PubMed  CAS  Google Scholar 

  25. Maraskovsky E, Daro E, Roux E, et al. In vivo generation of human dendritic cell subsets by Flt3-Ligand. Blood 2000;96:878–884.

    PubMed  CAS  Google Scholar 

  26. Pulendran B, Banchereau J, Burkeholder S, et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000;165:566–572.

    PubMed  CAS  Google Scholar 

  27. Sprent J, Webb SR. Intrathymic and extrathymic clonal deletion of T cells. Curr Opin Immunol 1995;7:196–205.

    Article  PubMed  CAS  Google Scholar 

  28. Khoury SJ, Wu ZY, Zhang HP, et al. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. III. Synergistic effect of lipopolysaccharide. Cell Immunol 1990;131:302–310.

    Article  PubMed  CAS  Google Scholar 

  29. Brocker T, Riedinger M, Karjalainen K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J Exp Med 1997;185:541–550.

    Article  PubMed  CAS  Google Scholar 

  30. Steinman RM, Nussenzweig MC. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 2002;99:351–358.

    Article  PubMed  CAS  Google Scholar 

  31. Dhodapkar M, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001;193:233–238.

    Article  PubMed  CAS  Google Scholar 

  32. Steinman RM, Turley S, Mellman I, Inaba K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000;191:411–416.

    Article  PubMed  CAS  Google Scholar 

  33. Caux C, Massacrier C, Vandervliet B, Barthelemy C, Liu YJ, Banchereau J. Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells. Int Immunol 1994;6:1177–1785.

    Article  PubMed  CAS  Google Scholar 

  34. Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a+CD83+ dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol 1998;161:2804–2809.

    PubMed  CAS  Google Scholar 

  35. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. J Immunol 1997;159:4772–4780.

    PubMed  CAS  Google Scholar 

  36. Liu L, Rich BE, Inobe J, Chen W, Weiner HL. A potential pathway of Th2 development during primary immune response. IL-10 pretreated dendritic cells can prime naive CD4+ T cells to secrete IL-4. Adv Exp Med Biol 1997;417:375–381.

    PubMed  CAS  Google Scholar 

  37. Takeuchi M, Kosiewicz MM, Alard P, Streilein JW. On the mechanisms by which transforming growth factor-beta 2 alters antigen-presenting abilities of macrophages on T cell activation. Eur J Immunol 1997;27:1648–1656.

    Article  PubMed  CAS  Google Scholar 

  38. Albert ML, Jegatheesan M, Darnell RB. Dendritic cell maturation is required for cross-tolerization of CD8+ T cells. Nature Immunol 2001;11:1010–1017.

    Article  CAS  Google Scholar 

  39. Suss G, Shortman K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 1996;183:1789–1796.

    Article  PubMed  CAS  Google Scholar 

  40. Kronin V, Winkel K, Suss G, et al. A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production. J Immunol 1996;157:3819–3827.

    PubMed  CAS  Google Scholar 

  41. Smith AL, de St Groth BF. Antigen-pulsed CD8alpha+ dendritic cells generate an immune response after subcutaneous injection without homing to the draining lymph node. J Exp Med 1999;189:593–598.

    Article  PubMed  CAS  Google Scholar 

  42. Grohmann U, Bianchi R, Belladonna ML, et al. IL-12 acts selectively on CD8alpha-dendritic cells to enhance presentation of a tumor peptide in vivo. J Immunol 1999;163:3100–3105.

    PubMed  CAS  Google Scholar 

  43. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685–711.

    Article  PubMed  CAS  Google Scholar 

  44. Heath WR, Carbone FR. 2001. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001;19:47–64.

    Article  PubMed  CAS  Google Scholar 

  45. Walker LSK, Abbas AK. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2002;2:11–19.

    Article  PubMed  CAS  Google Scholar 

  46. Iwasaki A, Kelsall BL. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 1999;190:229–239.

    Article  PubMed  CAS  Google Scholar 

  47. Sousa CR, Hieny S, Scharton-Kersten T, et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 1997;186:1819–1829.

    Article  Google Scholar 

  48. Ohteki T, Fukao T, Suzue K, et al. Interleukin 12-dependent interferon gamma production by CD8 alpha+ lymphoid dendritic cells. J Exp Med 1999;189:1981–1986.

    Article  PubMed  CAS  Google Scholar 

  49. Maldanado-Lopez R, Maliszewski C, Urbain J, Moser M. Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(−) dendritic cells to prime Th1/Th2 cells in vitro. J Immunol 2001;167:4345–4350.

    Google Scholar 

  50. Tanaka H, Demeure CE, Rubio M, Delespresse G, Sarfati M. Human monocytederived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 2000;192:405–412.

    Article  PubMed  CAS  Google Scholar 

  51. Kadowaki N, Antonenko S, Lau JY, Liu YJ. Natural interferon-alpha/beta producing cells link innate and adaptive immunity. J Exp Med 2000;192:219–226.

    Article  PubMed  CAS  Google Scholar 

  52. d’Ostiani CF, Del Sero G, Bacci A, et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper immunity in vitro and in vivo. J Exp Med 2000;191:1661–1674.

    Article  PubMed  CAS  Google Scholar 

  53. Tzou P, De Gregorio E, Lemaitre B. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr Opin Microbiol 2002;5:102–110.

    Article  PubMed  CAS  Google Scholar 

  54. Janeway CA Jr, Mezhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  55. Hoffman JA, Kafatos FC, Janeway CA Jr, Ezekowiz RAB. Phylogenetic perspectives in immunity. Science 1999;284:1313–1318.

    Article  Google Scholar 

  56. Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001;69:1477–1482.

    Article  PubMed  CAS  Google Scholar 

  57. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Banchereau J. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol 2001;167:5067–5076.

    PubMed  CAS  Google Scholar 

  58. Agrawal S, Agrawal A, Doughty B, et al. Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol 2003;171:4984–4989.

    PubMed  CAS  Google Scholar 

  59. Dillon S, Agrawal A, Van Dyke T, et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J Immunol 2004;172:4733–4743.

    PubMed  CAS  Google Scholar 

  60. Redecke V, Hacker H, Datta SK, et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004;72:2739–2743.

    Google Scholar 

  61. Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 2001;276:37692–37699.

    Article  PubMed  CAS  Google Scholar 

  62. Netea MG, Sutmuller R, Hermann C, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 2004;172:3712–3718.

    PubMed  CAS  Google Scholar 

  63. Sing A, Rost D, Tvardovskaia N, et al. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. Exp Med 2002;196:1017–1024.

    Article  CAS  Google Scholar 

  64. van der Kleij D, Latz E, Brouwers JF, et al. A novel host-parasite lipid cross-talk. Schistosomal lysophosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem 2002;277:48122–48129.

    Article  PubMed  Google Scholar 

  65. Stumbles PA, Thomas JA, Pimm CL. Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J Exp Med 1998;188:2019–2031.

    Article  PubMed  CAS  Google Scholar 

  66. Kadowaki B, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens. J Exp Med 2001;194:863–869.

    Article  PubMed  CAS  Google Scholar 

  67. Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 2001;31:3388–3393.

    Article  PubMed  CAS  Google Scholar 

  68. Linsey PS. T cell activation: you can’t get good help. Nature Immunol 2001;2:139,140.

    Article  CAS  Google Scholar 

  69. Huang FP, Platt N, Wykes M, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000;191:435–444.

    Article  PubMed  CAS  Google Scholar 

  70. Urban BC, Kaneko O, Dvorak JA. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 1999;400:73–77.

    Article  PubMed  CAS  Google Scholar 

  71. Van Overtvelt L, Vanderkeyde W, Verhasselt V, et al. Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLADR, and costimulatory molecules. Infect Immun 1999;67:4033–4040.

    PubMed  Google Scholar 

  72. Salio M, Cella M, Suter M, Lanzavecchia A. Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 1999;29:3245–3253.

    Article  PubMed  CAS  Google Scholar 

  73. Grosjean I, Caux C, Bella C, et al. Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 1997;186:801–812.

    Article  PubMed  CAS  Google Scholar 

  74. Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan NC, Liu YJ, Rabourdin-Combe C. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 1997;186:813–823.

    Article  PubMed  CAS  Google Scholar 

  75. Servet-Delprat C, Bausinger H, Manie S, et al. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol 2000;164:1753–1760.

    PubMed  CAS  Google Scholar 

  76. Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JK. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nat Immunol 2002;3:265–271.

    Article  PubMed  CAS  Google Scholar 

  77. Engelmayer J, Larsson M, Subklewe M, et al. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 1999;163:6762–6768.

    PubMed  CAS  Google Scholar 

  78. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL. Viral subversion of the immune system. Ann Rev Immunol 2000;18:861–926.

    Article  CAS  Google Scholar 

  79. McFadden G, Murphy PM. (2000). Host-related immunodmodulators encoded by poxviruses and herpesviruses. Curr Opin Microbiol 2000;3:371–378.

    Article  PubMed  CAS  Google Scholar 

  80. Angeli V, Faveeuw C, Roye C, et al. Role of the parasite-derived prostaglandin D2 in the inhibition of epidermal Langerhans cell migration during schistosomiasis infection. J Exp Med 2001;193:1135–1147.

    Article  PubMed  CAS  Google Scholar 

  81. Agrawal A, Lingappa J, Leppla SH, et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 2003;424:329–334.

    Article  PubMed  CAS  Google Scholar 

  82. Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE, Pulendran B. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol 2003;170:2797–2801.

    PubMed  CAS  Google Scholar 

  83. Geijtenbeek TB, Kwon DS, Torensma R, et al. DC-SIGN, a dendritic cell specific-HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000;151:673–684.

    Article  Google Scholar 

  84. MacDonald GH, Johnston RE. Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J Virol 2000;74:914–922.

    Article  PubMed  CAS  Google Scholar 

  85. Vidalain PO, Azocar O, Lamouille B, Astier A, Rabourdin-Combe C, Servet-Delprat C. Measles virus induces functional TRAIL production by human dendritic cells. J Virol 2000;74:556–559.

    Article  PubMed  CAS  Google Scholar 

  86. Servert-Delprat C, Vidalain PO, Azocar O, Le Deist F, Fischer A, Rabourdin-Combe C. Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. J Virol 2000;74:4387–4393.

    Article  Google Scholar 

  87. McGurik P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin-10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002;195:221–231.

    Article  Google Scholar 

  88. Dhodapkar MV, Steinman RM, Sapp M, et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J Clin Invest 1999;104:173–180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pulendran, B., Agrawal, A., Dillon, S., Agrawal, S. (2006). Dendritic Cells. In: Hackett, C.J., Harn, D.A. (eds) Vaccine Adjuvants. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59259-970-7_2

Download citation

Publish with us

Policies and ethics