Skip to main content

Microparticles and DNA Vaccines

  • Chapter
Vaccine Adjuvants

Abstract

Developing deoxyribonucleic acid (DNA) vaccines potent enough to be clinically useful will likely require an understanding of the mechanism of action both of naked DNA vaccines themselves, and of adjuvant formulations that may be combined with DNA. Mechanisms of action attributed to naked DNA vaccines described thus far include transfection of keratinocytes (1), muscle cells (2), and dendritic cells (DCs) (3), and activation of innate immunity by pathogen- associated molecular patterns (PAMPs) such as unmethylated CpG-containing immunostimulatory sequences (4). Improving the immunogenicity of DNA vaccines has focused on four areas of investigation: increasing stability and efficiency of transfection, maximizing the ability of the antigen to be presented by DCs, and stimulating the immune response to the target antigen. A collective body of work demonstrating the versatility and mechanism of action of microparticle/DNA vaccine formulations supports promise of developing effective DNA vaccines utilizing this potent adjuvant/delivery system. Understanding the mechanism of action of DNA/microparticles provides both a basis for rational optimization of the formulation and basic insights into efficient induction of immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD81 T cells after gene gun immunization. J Exp Med 1998;188:1075–1082.

    Article  PubMed  CAS  Google Scholar 

  2. Manthorpe M, Cornefertjensen F, Hartikka J, et al. Gene-therapy by intramuscular injection of plasmid DNA—studies on firefly luciferase gene-expression in mice. Hum Gene Ther 1993;4:419–431.

    PubMed  CAS  Google Scholar 

  3. Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B. DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 1999;189:169–178.

    Article  PubMed  CAS  Google Scholar 

  4. Sato Y, Roman M, Tighe H, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science 1996;273:352–354.

    Article  PubMed  CAS  Google Scholar 

  5. Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol 1995;6:229–248.

    PubMed  CAS  Google Scholar 

  6. Gupta RK, Singh M, O’Hagan DT. Poly(lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev 1998;32:225–246.

    Article  PubMed  Google Scholar 

  7. Dupuis M, McDonald DM, Ott G. Distribution of adjuvant MF59 and antigen gD2 after intramuscular injection in mice. Vaccine 1999;18:434–439.

    Article  PubMed  CAS  Google Scholar 

  8. Dupuis M, Denis-Mize K, LaBarbara A, et al. Immunization with the adjuvant MF59 induces macrophage trafficking and apoptosis. Eur J Immunol 2001;31:2910–2918.

    Article  PubMed  CAS  Google Scholar 

  9. Ignatius R, Mahnke K, Rivera M, et al. Presentation of proteins encapsulated in sterically stabilized liposomes by dendritic cells initiates CD8(+) T-cell responses in vivo. Blood 2000;96:3505–3513.

    PubMed  CAS  Google Scholar 

  10. Morein B, Bengtsson KL. Immunomodulation by ISCOMS, immune stimulating complexes. Methods 1999;19:94–102.

    Article  PubMed  CAS  Google Scholar 

  11. Johansen P, Men Y, Merkle HP, Gander B. Revisiting PLA/PLGA microspheres: an analysis of their potential in parenteral vaccination. Eur J Pharm Biopharm 2000;50:129–146.

    Article  PubMed  CAS  Google Scholar 

  12. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991–1045.

    PubMed  CAS  Google Scholar 

  13. Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 1992;130:11–16.

    Article  Google Scholar 

  14. Liu Y, Mounkes LC, Liggitt HD, et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat Biotechnol 1997;15:167–173.

    Article  PubMed  CAS  Google Scholar 

  15. Yi SW, Yune TY, Kim TW, et al. A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system. Pharm Res 2000;17:314–320.

    Article  PubMed  CAS  Google Scholar 

  16. Ishii N, Fukushima J, Kaneko T, et al. Cationic liposomes are a strong adjuvant for a DNA vaccine of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1997;13:1421–1428.

    Article  PubMed  CAS  Google Scholar 

  17. Singh M, Briones M, Ott G, O’Hagan D. Cationic microparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci USA 2000;97:811–816.

    Article  PubMed  CAS  Google Scholar 

  18. Tabata Y, Ikada Y. Phagocytosis of polymer microspheres by macrophages. Adv Polymer Sci 1990;94:107–141.

    CAS  Google Scholar 

  19. Chavany C, Saison-Behmoaras T, Le Doan T, Puisieux F, Couvreur P, Helene C. Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protects them against nucleases and increases their cellular uptake. Pharm Res 1994;11:1370–1378.

    Article  PubMed  CAS  Google Scholar 

  20. Fattal E, Vauthier C, Aynie I, et al. Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release 1998;53:137–143.

    Article  PubMed  CAS  Google Scholar 

  21. Denis-Mize KS, Dupuis M, MacKichan ML, et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther 2000;7:2105–2112.

    Article  PubMed  CAS  Google Scholar 

  22. Lanzavecchia A. Mechanisms of antigen uptake for presentation. Curr Opin Immunol 1996;8:348–354.

    Article  PubMed  CAS  Google Scholar 

  23. Dupuis M, Denis-Mize K, Woo C, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000;165:2850–2858.

    PubMed  CAS  Google Scholar 

  24. Newman KD, Kwon GS, Miller GG, Chlumecky V, Samuel J. Cytoplasmic delivery of a macromolecular fluorescent probe by poly(d, l-lactic-co-glycolic acid) microspheres. J Biomed Mater Res 2000;50:591–597.

    Article  PubMed  CAS  Google Scholar 

  25. Benoit MA, Ribet C, Distexhe J, et al. Studies on the potential of microparticles entrapping pDNA-poly(aminoacids) complexes as vaccine delivery systems. J Drug Target 2001;9:253–266.

    Article  PubMed  CAS  Google Scholar 

  26. Walter E, Merkle HP. Microparticle-mediated transfection of non-phagocytic cells in vitro. J Drug Target 2002;10:11–21.

    Article  PubMed  CAS  Google Scholar 

  27. Lunsford L, McKeever U, Eckstein V, Hedley ML. Tissue distribution and persistence in mice of plasmid DNA encapsulated in a PLGA-based microsphere delivery vehicle. J Drug Target 2000;8:39–50.

    Article  PubMed  CAS  Google Scholar 

  28. Nichols WW, Ledwith BJ, Manam SV, Troilo PJ. Potential DNA vaccine integration into host cell genome. Ann NY Acad Sci 1995;772:30–39.

    Article  PubMed  CAS  Google Scholar 

  29. Denis-Mize K, Dupuis M, Singh M, et al. Mechanisms of increased immunogenicity for DNA-based vaccines absorbed onto cationic microparticles. Cell Immunol 2003;225:12–20.

    Article  PubMed  CAS  Google Scholar 

  30. Fu TM, Ulmer JB, Caulfield MJ, et al. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 1997;3:362–371.

    PubMed  CAS  Google Scholar 

  31. Ciftci K, Su J. DNA-PLGA Microparticles: A promising delivery system for cancer gene therapy. In: 1999 AAPS Annual Meeting Abstracts Online; 1999. Available from: http://www.aapspharmsci.org/abstracts/AM_1999/2214.htm

  32. Kaneko H, Bednarek I, Wierzbicki A, et al. Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology 2000;267:8–16.

    Article  PubMed  CAS  Google Scholar 

  33. Vajdy M, O’Hagan DT. Microparticles for intranasal immunization. Adv Drug Deliv Rev 2001;51:127–141.

    Article  PubMed  CAS  Google Scholar 

  34. Singh M, Vajdy M, Gardner J, Briones M, O’Hagan D. Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. Vaccine 2001;20:594–602.

    Article  PubMed  CAS  Google Scholar 

  35. Jones DH, Corris S, McDonald S, Clegg JC, Farrar GH. Poly(DL-lactide-co-glycolide)-encapsulated plasmid DNA elicits systemic and mucosal antibody responses to encoded protein after oral administration. Vaccine 1997;15:814–817.

    Article  PubMed  CAS  Google Scholar 

  36. Hedley ML, Curley J, Urban R. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat Med 1998;4:365–368.

    Article  PubMed  CAS  Google Scholar 

  37. Chen sc, Jones DH, Fynan EF, et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol 1998;72:5757–5761.

    PubMed  CAS  Google Scholar 

  38. Herrmann JE, Chen SC, Jones DH, et al. Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles. Virology 1999;259:148–153.

    Article  PubMed  CAS  Google Scholar 

  39. O’Hagan D, Singh M, Ugozzoli M, et al. Induction of potent immune responses by cationic microparticles with adsorbed HIV DNA vaccines. J Virol 2001;75:9037–9043.

    Article  PubMed  CAS  Google Scholar 

  40. Briones M, Singh M, Ugozzoli M, et al. The preparation, characterization, and evaluation of cationic microparticles for DNA vaccine delivery. Pharm Res 2001;18:709–711.

    Article  PubMed  CAS  Google Scholar 

  41. McKeever U, Barman S, Hao T, et al. Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles. Vaccine 2002;20:1524–1531.

    Article  PubMed  CAS  Google Scholar 

  42. Klencke B, Matijevic M, Urban RG, et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin Cancer Res 2002;8:1028–1037.

    PubMed  CAS  Google Scholar 

  43. Bowersock TL, Martin S. Vaccine delivery to animals. Adv Drug Deliv Rev 1999;38:167–194.

    Article  PubMed  CAS  Google Scholar 

  44. Wierzbicki A, Kiszka I, Kaneko H, et al. Immunization strategies to augment oral vaccination with DNA and viral vectors expressing HIV envelope glycoprotein. Vaccine 2002;20:1295–1307.

    Article  PubMed  CAS  Google Scholar 

  45. Singh M, Ott G, Kazzaz J, et al. Cationic microparticles are an effective delivery system for immune stimulatory CpG DNA. Pharm Res 2001;18:1476–1479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Denis-Mize, K., Singh, M., O’Hagan, D.T., Ulmer, J.B., Donnelly, J.J. (2006). Microparticles and DNA Vaccines. In: Hackett, C.J., Harn, D.A. (eds) Vaccine Adjuvants. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59259-970-7_13

Download citation

Publish with us

Policies and ethics