Skip to main content

Endocytosis and Endosomal Sorting of Receptor Tyrosine Kinases

  • Chapter
  • First Online:
Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease

Abstract

Activation of receptor tyrosine kinases (RTKs) by their ligands at the cell surface results in acceleration of RTK endocytosis and subsequent targeting of internalized RTKs to lysosomes for degradation. Rapid internalization and efficient sorting of an activated RTK to lysosomes lead to a dramatic reduction in the cellular level of an RTK protein, a phenomenon called ligand-induced RTK downregulation. Endocytic trafficking is the major regulator of RTK signaling, but the mechanisms of activity-dependent RTK endocytosis are not well understood. In this chapter we will describe clathrin-dependent and clathrin-independent pathways of RTK internalization and the intracellular traffic routes of internalized RTKs, as well as membrane compartments and molecular mechanisms involved in endocytosis and endosomal sorting of RTKs. Based on the studies of endocytosis of epidermal growth factor receptor (EGFR) as the prototypic experimental system, common itineraries and mechanisms of endocytic trafficking of RTKs will be highlighted. The deviations from these common trafficking rules observed in studies of other members of the RTK family will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat Rev. 2008;8(11):835–50.

    CAS  Google Scholar 

  2. Joffre C, Barrow R, Menard L, Calleja V, Hart IR, Kermorgant S. A direct role for Met endocytosis in tumorigenesis. Nat Cell Biol. 2011;13(7):827–37.

    CAS  PubMed  Google Scholar 

  3. Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10(9):609–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Platta HW, Stenmark H. Endocytosis and signaling. Curr Opin Cell Biol. 2011;23(4):393–403.

    CAS  PubMed  Google Scholar 

  5. Scita G, Di Fiore PP. The endocytic matrix. Nature. 2010;463(7280):464–73.

    CAS  PubMed  Google Scholar 

  6. Hommelgaard AM, Lerdrup M, van Deurs B. Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. Mol Biol Cell. 2004;15(4):1557–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Foti M, Moukil MA, Dudognon P, Carpentier JL. Insulin and IGF-1 receptor trafficking and signalling. Novartis Found Symp. 2004;262:125–41. discussion 41–7, 265–8.

    CAS  PubMed  Google Scholar 

  8. Mineo C, Gill GN, Anderson RG. Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem. 1999;274(43):30636–43.

    CAS  PubMed  Google Scholar 

  9. Liu P, Ying Y, Ko YG, Anderson RG. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem. 1996;271(17):10299–303.

    CAS  PubMed  Google Scholar 

  10. Lazar CS, Cresson CM, Lauffenburger DA, Gill GN. The Na+/H+ exchanger regulatory factor stabilizes epidermal growth factor receptors at the cell surface. Mol Biol Cell. 2004;15(12):5470–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Borg JP, Marchetto S, Le Bivic A, Ollendorff V, Jaulin-Bastard F, Saito H, et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nat Cell Biol. 2000;2(7):407–14.

    CAS  PubMed  Google Scholar 

  12. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    CAS  PubMed  Google Scholar 

  13. McClain DA. Mechanism and role of insulin receptor endocytosis. Am J Med Sci. 1992;304(3):192–201.

    CAS  PubMed  Google Scholar 

  14. Jopling HM, Howell GJ, Gamper N, Ponnambalam S. The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. Biochem Biophys Res Commun. 2011;410(2):170–6.

    CAS  PubMed  Google Scholar 

  15. Burke PM, Wiley HS. Human mammary epithelial cells rapidly exchange empty EGFR between surface and intracellular pools. J Cell Physiol. 1999;180(3):448–60.

    CAS  PubMed  Google Scholar 

  16. McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12(8):517–33.

    CAS  PubMed  Google Scholar 

  17. Gorden P, Carpentier JL, Cohen S, Orci L. Epidermal growth factor: morphological demonstration of binding, internalization, and lysosomal association in human fibroblasts. Proc Natl Acad Sci U S A. 1978;75(10):5025–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Carpentier JL, Gorden P, Anderson RG, Goldstein JL, Brown MS, Cohen S, et al. Co-localization of 125I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J Cell Biol. 1982;95(1):73–7.

    CAS  PubMed  Google Scholar 

  19. Bogdanovic E, Coombs N, Dumont DJ. Oligomerized Tie2 localizes to clathrin-coated pits in response to angiopoietin-1. Histochem Cell Biol. 2009;132(2):225–37.

    CAS  PubMed  Google Scholar 

  20. Beattie EC, Howe CL, Wilde A, Brodsky FM, Mobley WC. NGF signals through TrkA to increase clathrin at the plasma membrane and enhance clathrin-mediated membrane trafficking. J Neurosci. 2000;20(19):7325–33.

    CAS  PubMed  Google Scholar 

  21. Lampugnani MG, Orsenigo F, Gagliani MC, Tacchetti C, Dejana E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol. 2006;174(4):593–604.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Zheng J, Shen WH, Lu TJ, Zhou Y, Chen Q, Wang Z, et al. Clathrin-dependent endocytosis is required for TrkB-dependent Akt-mediated neuronal protection and dendritic growth. J Biol Chem. 2008;283(19):13280–8.

    CAS  PubMed  Google Scholar 

  23. Huang F, Khvorova A, Marshall W, Sorkin A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem. 2004;279(16):16657–61.

    CAS  PubMed  Google Scholar 

  24. von Kleist L, Stahlschmidt W, Bulut H, Gromova K, Puchkov D, Robertson MJ, et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell. 2011;146(3):471–84.

    Google Scholar 

  25. Motley A, Bright NA, Seaman MN, Robinson MS. Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol. 2003;162(5):909–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Sandvig K, Pust S, Skotland T, van Deurs B. Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol. 2011;23(4):413–20.

    CAS  PubMed  Google Scholar 

  27. Wiley HS. Anomalous binding of epidermal growth factor to A431 cells is due to the effect of high receptor densities and a saturable endocytic system. J Cell Biol. 1988;107:801–10.

    CAS  PubMed  Google Scholar 

  28. Lund KA, Opresko LK, Strarbuck C, Walsh BJ, Wiley HS. Quantitative analysis of the endocytic system involved in hormone-induced receptor internalization. J Biol Chem. 1990;265:15713–23.

    CAS  PubMed  Google Scholar 

  29. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C, Transidico P, et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc Natl Acad Sci U S A. 2005;102(8):2760–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Jiang X, Sorkin A. Epidermal growth factor receptor internalization through clathrin-coated pits requires Cbl RING finger and proline-rich domains but not receptor polyubiquitylation. Traffic. 2003;4(8):529–43.

    CAS  PubMed  Google Scholar 

  31. Backer JM, Shoelson SE, Haring E, White MF. Insulin receptors internalize by a rapid, saturable pathway requiring receptor autophosphorylation and an intact juxtamembrane region. J Cell Biol. 1991;115(6):1535–45.

    CAS  PubMed  Google Scholar 

  32. Prager D, Li HL, Yamasaki H, Melmed S. Human insulin-like growth factor I receptor internalization. Role of the juxtamembrane domain. J Biol Chem. 1994;269(16):11934–7.

    CAS  PubMed  Google Scholar 

  33. Miller K, Beardmore J, Kanety H, Schlessinger J, Hopkins CR. Localization of the epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J Cell Biol. 1986;102(2):500–9.

    CAS  PubMed  Google Scholar 

  34. Beguinot L, Lyall RM, Willingham MC, Pastan I. Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc Natl Acad Sci U S A. 1984;81(8):2384–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Haigler HT, McKanna JA, Cohen S. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J Cell Biol. 1979;83(1):82–90.

    CAS  PubMed  Google Scholar 

  36. Hopkins CR, Gibson A, Shipman M, Miller K. Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature. 1990;346(6282):335–9.

    CAS  PubMed  Google Scholar 

  37. Wu C, Cui B, He L, Chen L, Mobley WC. The coming of age of axonal neurotrophin signaling endosomes. J Proteomics. 2009;72(1):46–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Chowdary PD, Che DL, Cui B. Neurotrophin signaling via long-distance axonal transport. Annu Rev Phys Chem. 2012;63:571.

    CAS  PubMed  Google Scholar 

  39. Huecksteadt T, Olefsky JM, Brandenberg D, Heidenreich KA. Recycling of photoaffinity-labeled insulin receptors in rat adipocytes. Dissociation of insulin-receptor complexes is not required for receptor recycling. J Biol Chem. 1986;261(19):8655–9.

    CAS  PubMed  Google Scholar 

  40. Sorkin A, Krolenko S, Kudrjavtceva N, Lazebnik J, Teslenko L, Soderquist AM, et al. Recycling of epidermal growth factor-receptor complexes in A431 cells: identification of dual pathways. J Cell Biol. 1991;112(1):55–63.

    CAS  PubMed  Google Scholar 

  41. Zapf-Colby A, Olefsky JM. Nerve growth factor processing and trafficking events following TrkA-mediated endocytosis. Endocrinology. 1998;139(7):3232–40.

    CAS  PubMed  Google Scholar 

  42. Masui H, Castro L, Mendelsohn J. Consumption of EGF by A431 cells: evidence for receptor recycling. J Cell Biol. 1993;120(1):85–93.

    CAS  PubMed  Google Scholar 

  43. Resat H, Ewald JA, Dixon DA, Wiley HS. An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J. 2003;85(2):730–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. French AR, Tadaki DK, Niyogi SK, Lauffenburger DA. Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction. J Biol Chem. 1995;270(9):4334–40.

    CAS  PubMed  Google Scholar 

  45. Roepstorff K, Grandal MV, Henriksen L, Knudsen SL, Lerdrup M, Grovdal L, et al. Differential effects of EGFR ligands on endocytic sorting of the receptor. Traffic. 2009;10(8):1115–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. French AR, Sudlow GP, Wiley HS, Lauffenburger DA. Postendocytic trafficking of epidermal growth factor-receptor complexes is mediated through saturable and specific endosomal interactions. J Biol Chem. 1994;269(22):15749–55.

    CAS  PubMed  Google Scholar 

  47. Lee PS, Wang Y, Dominguez MG, Yeung YG, Murphy MA, Bowtell DD, et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 1999;18(13):3616–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Stoscheck CM, Carpenter G. Characterization of the metabolic turnover of epidermal growth factor receptor protein in A-431 cells. J Cell Physiol. 1984;120(3):296–302.

    CAS  PubMed  Google Scholar 

  49. Duex JE, Sorkin A. RNA interference screen identifies Usp18 as a regulator of epidermal growth factor receptor synthesis. Mol Biol Cell. 2009;20(6):1833–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Sorkina T, Huang F, Beguinot L, Sorkin A. Effect of tyrosine kinase inhibitors on clathrin-coated pit recruitment and internalization of epidermal growth factor receptor. J Biol Chem. 2002;277(30):27433–41.

    CAS  PubMed  Google Scholar 

  51. Glenney Jr JR, Chen WS, Lazar CS, Walton GM, Zokas LM, Rosenfeld MG, et al. Ligand-induced endocytosis of the EGF receptor is blocked by mutational inactivation and by microinjection of anti-phosphotyrosine antibodies. Cell. 1988;52:675–84.

    CAS  PubMed  Google Scholar 

  52. Sorokin A, Mohammadi M, Huang J, Schlessinger J. Internalization of fibroblast growth factor receptor is inhibited by a point mutation at tyrosine 766. J Biol Chem. 1994;269(25):17056–61.

    CAS  PubMed  Google Scholar 

  53. Lamaze C, Schmid SL. Recruitment of epidermal growth factor receptors into coated pits requires their activated tyrosine kinase. J Cell Biol. 1995;129:47–54.

    CAS  PubMed  Google Scholar 

  54. Sorkin A, Westermark B, Heldin CH, Claesson-Welsh L. Effect of receptor kinase inactivation on the rate of internalization and degradation of PDGF and the PDGF beta-receptor. J Cell Biol. 1991;112(3):469–78.

    CAS  PubMed  Google Scholar 

  55. Wiedlocha A, Sorensen V. Signaling, internalization, and intracellular activity of fibroblast growth factor. Curr Top Microbiol Immunol. 2004;286:45–79.

    CAS  PubMed  Google Scholar 

  56. Dougher M, Terman BI. Autophosphorylation of KDR in the kinase domain is required for maximal VEGF-stimulated kinase activity and receptor internalization. Oncogene. 1999;18(8):1619–27.

    CAS  PubMed  Google Scholar 

  57. Wolff M, Tetzlaff K, Nivens MC, Schneider FJ, Jung B, Hohlfeld J, et al. In vivo inhibition of epidermal growth factor receptor autophosphorylation prevents receptor internalization. Exp Cell Res. 2011;317(1):42–50.

    CAS  PubMed  Google Scholar 

  58. Honegger AM, Dull TJ, Felder S, Obberghen EV, Bellot F, Szapary D, et al. Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell. 1987;51:199–209.

    CAS  PubMed  Google Scholar 

  59. Wang Q, Villeneuve G, Wang Z. Control of epidermal growth factor receptor endocytosis by receptor dimerization, rather than receptor kinase activation. EMBO Rep. 2005;6(10):942–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Acconcia F, Sigismund S, Polo S. Ubiquitin in trafficking: the network at work. Exp Cell Res. 2009;315(9):1610–8.

    CAS  PubMed  Google Scholar 

  61. Galcheva-Gargova Z, Theroux SJ, Davis RJ. The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene. 1995;11(12):2649–55.

    CAS  PubMed  Google Scholar 

  62. Mori S, Heldin CH, Claesson-Welsh L. Ligand-induced polyubiquitination of the platelet-derived growth factor beta-receptor. J Biol Chem. 1992;267(9):6429–34.

    CAS  PubMed  Google Scholar 

  63. Serresi M, Piccinini G, Pierpaoli E, Fazioli F. A ligand-inducible anaplastic lymphoma kinase chimera is endocytosis impaired. Oncogene. 2004;23(5):1098–108.

    CAS  PubMed  Google Scholar 

  64. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006;21(6):737–48.

    CAS  PubMed  Google Scholar 

  65. Geetha T, Jiang J, Wooten MW. Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell. 2005;20(2):301–12.

    CAS  PubMed  Google Scholar 

  66. Arevalo JC, Waite J, Rajagopal R, Beyna M, Chen ZY, Lee FS, et al. Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron. 2006;50(4):549–59.

    CAS  PubMed  Google Scholar 

  67. Mao Y, Shang Y, Pham VC, Ernst JA, Lill JR, Scales SJ, et al. Poly-ubiquitination of the insulin-like growth factor I receptor (IGF-IR) activation loop promotes antibody-induced receptor internalization and down-regulation. J Biol Chem. 2011;286:41852.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Pickart CM. Back to the future with ubiquitin. Cell. 2004;116(2):181–90.

    CAS  PubMed  Google Scholar 

  69. Marmor MD, Yarden Y. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene. 2004;23(11):2057–70.

    CAS  PubMed  Google Scholar 

  70. Duval M, Bedard-Goulet S, Delisle C, Gratton JP. Vascular endothelial growth factor-dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem. 2003;278(22):20091–7.

    CAS  PubMed  Google Scholar 

  71. Miyake S, Mullane-Robinson KP, Lill NL, Douillard P, Band H. Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. A critical role for Cbl tyrosine kinase-binding domain. J Biol Chem. 1999;274(23):16619–28.

    CAS  PubMed  Google Scholar 

  72. Fasen K, Cerretti DP, Huynh-Do U. Ligand binding induces Cbl-dependent EphB1 receptor degradation through the lysosomal pathway. Traffic. 2008;9(2):251–66.

    CAS  PubMed  Google Scholar 

  73. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell. 1999;4(6):1029–40.

    CAS  PubMed  Google Scholar 

  74. Penengo L, Rubin C, Yarden Y, Gaudino G. c-Cbl is a critical modulator of the Ron tyrosine kinase receptor. Oncogene. 2003;22(24):3669–79.

    CAS  PubMed  Google Scholar 

  75. Wilhelmsen K, Burkhalter S, van der Geer P. C-Cbl binds the CSF-1 receptor at tyrosine 973, a novel phosphorylation site in the receptor’s carboxy-terminus. Oncogene. 2002;21(7):1079–89.

    CAS  PubMed  Google Scholar 

  76. Batzer AG, Rotin D, Urena JM, Skolnik EY, Schlessinger J. Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol. 1994;14(8):5192–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Waterman H, Katz M, Rubin C, Shtiegman K, Lavi S, Elson A, et al. A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J. 2002;21(3):303–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Sun J, Pedersen M, Bengtsson S, Ronnstrand L. Grb2 mediates negative regulation of stem cell factor receptor/c-Kit signaling by recruitment of Cbl. Exp Cell Res. 2007;313(18):3935–42.

    CAS  PubMed  Google Scholar 

  79. Peschard P, Fournier TM, Lamorte L, Naujokas MA, Band H, Langdon WY, et al. Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell. 2001;8(5):995–1004.

    CAS  PubMed  Google Scholar 

  80. Jiang X, Huang F, Marusyk A, Sorkin A. Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell. 2003;14(3):858–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Li N, Lorinczi M, Ireton K, Elferink LA. Specific Grb2-mediated interactions regulate clathrin-dependent endocytosis of the cMet-tyrosine kinase. J Biol Chem. 2007;282(23):16764–75.

    CAS  PubMed  Google Scholar 

  82. Johannessen LE, Pedersen NM, Pedersen KW, Madshus IH, Stang E. Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor- and Grb2-containing clathrin-coated pits. Mol Cell Biol. 2006;26(2):389–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. de Melker AA, van der Horst G, Calafat J, Jansen H, Borst J. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J Cell Sci. 2001;114(Pt 11):2167–78.

    PubMed  Google Scholar 

  84. Zeng S, Xu Z, Lipkowitz S, Longley JB. Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood. 2005;105(1):226–32.

    CAS  PubMed  Google Scholar 

  85. Huang F, Sorkin A. Growth factor receptor binding protein 2-mediated recruitment of the RING domain of Cbl to the epidermal growth factor receptor is essential and sufficient to support receptor endocytosis. Mol Biol Cell. 2005;16(3):1268–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Wang PY, Pai LM. D-Cbl binding to Drk leads to dose-dependent down-regulation of EGFR signaling and increases receptor-ligand endocytosis. PLoS One. 2011;6(2):e17097.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Yoon CH, Chang C, Hopper NA, Lesa GM, Sternberg PW. Requirements of multiple domains of SLI-1, a Caenorhabditis elegans homologue of c-Cbl, and an inhibitory tyrosine in LET-23 in regulating vulval differentiation. Mol Biol Cell. 2000;11(11):4019–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY, et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J. 2002;21(18):4796–808.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Thien CB, Langdon WY. Negative regulation of PTK signalling by Cbl proteins. Growth Factors. 2005;23(2):161–7.

    CAS  PubMed  Google Scholar 

  90. Bao J, Gur G, Yarden Y. Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci U S A. 2003;100(5):2438–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Wu WJ, Tu S, Cerione RA. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell. 2003;114(6):715–25.

    CAS  PubMed  Google Scholar 

  92. Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F. Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci U S A. 2011;108(51):20579–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Haugsten EM, Malecki J, Bjorklund SM, Olsnes S, Wesche J. Ubiquitination of fibroblast growth factor receptor 1 is required for its intracellular sorting but not for its endocytosis. Mol Biol Cell. 2008;19(8):3390–403.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Hanafusa H, Ishikawa K, Kedashiro S, Saigo T, Iemura S, Natsume T, et al. Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nat Commun. 2011;2:158.

    PubMed Central  PubMed  Google Scholar 

  95. Liu NS, Loo LS, Loh E, Seet LF, Hong W. Participation of Tom1L1 in EGF-stimulated endocytosis of EGF receptor. EMBO J. 2009;28(22):3485–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Kawada K, Upadhyay G, Ferandon S, Janarthanan S, Hall M, Vilardaga JP, et al. Cell migration is regulated by platelet-derived growth factor receptor endocytosis. Mol Cell Biol. 2009;29(16):4508–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I. CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases. J Biol Chem. 2002;277(42):39666–72.

    CAS  PubMed  Google Scholar 

  98. Buchse T, Horras N, Lenfert E, Krystal G, Korbel S, Schumann M, et al. CIN85 interacting proteins in B cells - specific role for SHIP-1. Mol Cell Proteomics. 2011;10:M110.006239.

    PubMed Central  PubMed  Google Scholar 

  99. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002;416(6877):187–90.

    CAS  PubMed  Google Scholar 

  100. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature. 2002;416(6877):183–7.

    CAS  PubMed  Google Scholar 

  101. Kowanetz K, Szymkiewicz I, Haglund K, Kowanetz M, Husnjak K, Taylor JD, et al. Identification of a novel proline-arginine motif involved in CIN85-dependent clustering of Cbl and down-regulation of epidermal growth factor receptors. J Biol Chem. 2003;278(41):39735–46.

    CAS  PubMed  Google Scholar 

  102. Schmidt MH, Hoeller D, Yu J, Furnari FB, Cavenee WK, Dikic I, et al. Alix/AIP1 antagonizes epidermal growth factor receptor downregulation by the Cbl-SETA/CIN85 complex. Mol Cell Biol. 2004;24(20):8981–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic. 2006;7(3):262–81.

    CAS  PubMed  Google Scholar 

  104. Kazazic M, Bertelsen V, Pedersen KW, Vuong TT, Grandal MV, Rodland MS, et al. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic. 2009;10(2):235–45.

    CAS  PubMed  Google Scholar 

  105. Chen H, Ko G, Zatti A, Di Giacomo G, Liu L, Raiteri E, et al. Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci U S A. 2009;106(33):13838–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Tanno H, Yamaguchi T, Goto E, Ishido S, Komada M. The Ankrd 13 family of UIM-bearing proteins regulates EGF receptor endocytosis from the plasma membrane. Mol Biol Cell. 2012;23:1343.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Sugiyama S, Kishida S, Chayama K, Koyama S, Kikuchi A. Ubiquitin-interacting motifs of Epsin are involved in the regulation of insulin-dependent endocytosis. J Biochem. 2005;137(3):355–64.

    CAS  PubMed  Google Scholar 

  108. Tebar F, Sorkina T, Sorkin A, Ericsson M, Kirchhausen T. Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits. J Biol Chem. 1996;271(46):28727–30.

    CAS  PubMed  Google Scholar 

  109. Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009;10(6):398–409.

    CAS  PubMed  Google Scholar 

  110. Sundvall M, Korhonen A, Paatero I, Gaudio E, Melino G, Croce CM, et al. Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms. Proc Natl Acad Sci U S A. 2008;105(11):4162–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Persaud A, Alberts P, Amsen EM, Xiong X, Wasmuth J, Saadon Z, et al. Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Mol Syst Biol. 2009;5:333.

    PubMed Central  PubMed  Google Scholar 

  112. Persaud A, Alberts P, Hayes M, Guettler S, Clarke I, Sicheri F, et al. Nedd4-1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function. EMBO J. 2011;30(16):3259–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Vecchione A, Marchese A, Henry P, Rotin D, Morrione A. The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol. 2003;23(9):3363–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Monami G, Emiliozzi V, Morrione A. Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol. 2008;216(2):426–37.

    CAS  PubMed  Google Scholar 

  115. Huang Q, Szebenyi DM. Structural basis for the interaction between the growth factor-binding protein GRB10 and the E3 ubiquitin ligase NEDD4. J Biol Chem. 2010;285(53):42130–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Cao XR, Lill NL, Boase N, Shi PP, Croucher DR, Shan H, et al. Nedd4 controls animal growth by regulating IGF-1 signaling. Sci Signal. 2008;1(38):ra5.

    PubMed Central  PubMed  Google Scholar 

  117. Girnita L, Shenoy SK, Sehat B, Vasilcanu R, Girnita A, Lefkowitz RJ, et al. {beta}-Arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. J Biol Chem. 2005;280(26):24412–9.

    CAS  PubMed  Google Scholar 

  118. Sehat B, Andersson S, Girnita L, Larsson O. Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res. 2008;68(14):5669–77.

    CAS  PubMed  Google Scholar 

  119. Ray D, Ahsan A, Helman A, Chen G, Hegde A, Gurjar SR, et al. Regulation of EGFR protein stability by the HECT-type ubiquitin ligase SMURF2. Neoplasia. 2011;13(7):570–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Li Y, Zhou Z, Alimandi M, Chen C. WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer. Oncogene. 2009;28(33):2948–58.

    CAS  PubMed  Google Scholar 

  121. Zeng F, Xu J, Harris RC. Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells. FASEB J. 2009;23(6):1935–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Takahashi Y, Shimokawa N, Esmaeili-Mahani S, Morita A, Masuda H, Iwasaki T, et al. Ligand-induced downregulation of TrkA is partly regulated through ubiquitination by Cbl. FEBS Lett. 2011;585(12):1741–7.

    CAS  PubMed  Google Scholar 

  123. Cao Z, Wu X, Yen L, Sweeney C, Carraway 3rd KL. Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol. 2007;27(6):2180–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Haft CR, Klausner RD, Taylor SI. Involvement of dileucine motifs in the internalization and degradation of the insulin receptor. J Biol Chem. 1994;269(42):26286–94.

    CAS  PubMed  Google Scholar 

  125. Hamer I, Haft CR, Paccaud JP, Maeder C, Taylor S, Carpentier JL. Dual role of a dileucine motif in insulin receptor endocytosis. J Biol Chem. 1997;272(35):21685–91.

    CAS  PubMed  Google Scholar 

  126. Morrison P, Chung KC, Rosner MR. Mutation of Di-leucine residues in the juxtamembrane region alters EGF receptor expression. Biochemistry. 1996;35(46):14618–24.

    CAS  PubMed  Google Scholar 

  127. Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR, Honing S, et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature. 2008;456(7224):976–9.

    CAS  PubMed  Google Scholar 

  128. Backer JM, Shoelson SE, Weiss MA, Hua QX, Cheatham RB, Haring E, et al. The insulin receptor juxtamembrane region contains two independent tyrosine/beta-turn internalization signals. J Cell Biol. 1992;118(4):831–9.

    CAS  PubMed  Google Scholar 

  129. Chen WJ, Goldstein JL, Brown MS. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem. 1990;265(6):3116–23.

    CAS  PubMed  Google Scholar 

  130. Wu H, Windmiller DA, Wang L, Backer JM. YXXM motifs in the PDGF-beta receptor serve dual roles as phosphoinositide 3-kinase binding motifs and tyrosine-based endocytic sorting signals. J Biol Chem. 2003;278(42):40425–8.

    CAS  PubMed  Google Scholar 

  131. Traub LM. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol. 2009;10(9):583–96.

    CAS  PubMed  Google Scholar 

  132. Sorkin A, Mazzotti M, Sorkina T, Scotto L, Beguinot L. Epidermal growth factor receptor interaction with clathrin adaptors is mediated by the Tyr974-containing internalization motif. J Biol Chem. 1996;271(23):13377–84.

    CAS  PubMed  Google Scholar 

  133. Sorkin A, Carpenter G. Interaction of activated EGF receptors with coated pit adaptins. Science. 1993;261(5121):612–5.

    CAS  PubMed  Google Scholar 

  134. Nesterov A, Carter RE, Sorkina T, Gill GN, Sorkin A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO J. 1999;18(9):2489–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Boll W, Gallusser A, Kirchhausen T. Role of the regulatory domain of the EGF-receptor cytoplasmic tail in selective binding of the clathrin-associated complex AP-2. Curr Biol. 1995;5(10):1168–78.

    CAS  PubMed  Google Scholar 

  136. Huang F, Jiang X, Sorkin A. Tyrosine phosphorylation of the beta2 subunit of clathrin adaptor complex AP-2 reveals the role of a di-leucine motif in the epidermal growth factor receptor trafficking. J Biol Chem. 2003;278(44):43411–7.

    CAS  PubMed  Google Scholar 

  137. Frosi Y, Anastasi S, Ballaro C, Varsano G, Castellani L, Maspero E, et al. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol. 2010;189(3):557–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Grandal MV, Grovdal LM, Henriksen L, Andersen MH, Holst MR, Madshus IH, et al. Differential roles of Grb2 and AP-2 in p38 MAPK- and EGF-induced EGFR internalization. Traffic. 2012;13:576.

    CAS  PubMed  Google Scholar 

  139. Wang Q, Zhu F, Wang Z. Identification of EGF receptor C-terminal sequences 1005-1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. Exp Cell Res. 2007;313(15):3349–63.

    CAS  PubMed  Google Scholar 

  140. Haugsten EM, Zakrzewska M, Brech A, Pust S, Olsnes S, Sandvig K, et al. Clathrin- and dynamin-independent endocytosis of FGFR3 – implications for signalling. PLoS One. 2011;6(7):e21708.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Lanahan AA, Hermans K, Claes F, Kerley-Hamilton JS, Zhuang ZW, Giordano FJ, et al. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell. 2010;18(5):713–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Salani B, Passalacqua M, Maffioli S, Briatore L, Hamoudane M, Contini P, et al. IGF-IR internalizes with Caveolin-1 and PTRF/Cavin in HaCat cells. PLoS One. 2010;5(11):e14157.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Abella JV, Parachoniak CA, Sangwan V, Park M. Dorsal ruffle microdomains potentiate Met receptor tyrosine kinase signaling and down-regulation. J Biol Chem. 2010;285(32):24956–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Yamazaki T, Zaal K, Hailey D, Presley J, Lippincott-Schwartz J, Samelson LE. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci. 2002;115(Pt 9):1791–802.

    CAS  PubMed  Google Scholar 

  145. Orth JD, Krueger EW, Weller SG, McNiven MA. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res. 2006;66(7):3603–10.

    CAS  PubMed  Google Scholar 

  146. Valdez G, Philippidou P, Rosenbaum J, Akmentin W, Shao Y, Halegoua S. Trk-signaling endosomes are generated by Rac-dependent macroendocytosis. Proc Natl Acad Sci U S A. 2007;104(30):12270–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Barbieri MA, Roberts RL, Gumusboga A, Highfield H, Alvarez-Dominguez C, Wells A, et al. Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J Cell Biol. 2000;151(3):539–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Deininger K, Eder M, Kramer ER, Zieglgansberger W, Dodt HU, Dornmair K, et al. The Rab5 guanylate exchange factor Rin1 regulates endocytosis of the EphA4 receptor in mature excitatory neurons. Proc Natl Acad Sci U S A. 2008;105(34):12539–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Pitulescu ME, Adams RH. Eph/ephrin molecules – a hub for signaling and endocytosis. Genes Dev. 2010;24(22):2480–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, et al. Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron. 2005;46(2):205–17.

    CAS  PubMed  Google Scholar 

  151. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell. 2008;15(2):209–19.

    CAS  PubMed  Google Scholar 

  152. Sachse M, Urbe S, Oorschot V, Strous GJ, Klumperman J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell. 2002;13(4):1313–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10(9):597–608.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Hanyaloglu AC, von Zastrow M. A novel sorting sequence in the beta2-adrenergic receptor switches recycling from default to the Hrs-dependent mechanism. J Biol Chem. 2007;282(5):3095–104.

    CAS  PubMed  Google Scholar 

  155. Parachoniak CA, Luo Y, Abella JV, Keen JH, Park M. GGA3 functions as a switch to promote Met receptor recycling, essential for sustained ERK and cell migration. Dev Cell. 2011;20(6):751–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Puertollano R, Bonifacino JS. Interactions of GGA3 with the ubiquitin sorting machinery. Nat Cell Biol. 2004;6(3):244–51.

    CAS  PubMed  Google Scholar 

  157. Teis D, Saksena S, Emr SD. SnapShot: the ESCRT machinery. Cell. 2009;137(1):182–e1.

    CAS  PubMed  Google Scholar 

  158. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature. 2010;464(7290):864–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21(1):77–91.

    CAS  PubMed  Google Scholar 

  160. Eden ER, Huang F, Sorkin A, Futter CE. The role of EGF receptor ubiquitination in regulating its intracellular traffic. Traffic. 2012;13:329.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Ronning SB, Pedersen NM, Madshus IH, Stang E. CIN85 regulates ubiquitination and degradative endosomal sorting of the EGF receptor. Exp Cell Res. 2011;317(13):1804–16.

    CAS  PubMed  Google Scholar 

  162. Dikic I, Schmidt MH. Malfunctions within the Cbl interactome uncouple receptor tyrosine kinases from destructive transport. Eur J Cell Biol. 2007;86(9):505–12.

    CAS  PubMed  Google Scholar 

  163. Takayama Y, May P, Anderson RG, Herz J. Low density lipoprotein receptor-related protein 1 (LRP1) controls endocytosis and c-CBL-mediated ubiquitination of the platelet-derived growth factor receptor beta (PDGFR beta). J Biol Chem. 2005;280(18):18504–10.

    CAS  PubMed  Google Scholar 

  164. Gur G, Rubin C, Katz M, Amit I, Citri A, Nilsson J, et al. LRIG1 restricts growth factor signaling by enhancing receptor ubiquitylation and degradation. EMBO J. 2004;23(16):3270–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Bache KG, Raiborg C, Mehlum A, Stenmark H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem. 2003;278(14):12513–21.

    CAS  PubMed  Google Scholar 

  166. Jekely G, Rorth P. Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep. 2003;4(12):1163–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ, et al. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem. 2006;281(8):5094–105.

    CAS  PubMed  Google Scholar 

  168. Ewan LC, Jopling HM, Jia H, Mittar S, Bagherzadeh A, Howell GJ, et al. Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic. 2006;7(9):1270–82.

    CAS  PubMed  Google Scholar 

  169. Belleudi F, Leone L, Maggio M, Torrisi MR. Hrs regulates the endocytic sorting of the fibroblast growth factor receptor 2b. Exp Cell Res. 2009;315(13):2181–91.

    CAS  PubMed  Google Scholar 

  170. Wurdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008;14(5):382–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Bao J, Alroy I, Waterman H, Schejter ED, Brodie C, Gruenberg J, et al. Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome. J Biol Chem. 2000;275(34):26178–86.

    CAS  PubMed  Google Scholar 

  172. Hellberg C, Schmees C, Karlsson S, Ahgren A, Heldin CH. Activation of protein kinase C alpha is necessary for sorting the PDGF beta-receptor to Rab4a-dependent recycling. Mol Biol Cell. 2009;20(12):2856–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Ying H, Zheng H, Scott K, Wiedemeyer R, Yan H, Lim C, et al. MIG-6 controls EGFR trafficking and suppresses gliomagenesis. Proc Natl Acad Sci U S A. 2010;107(15):6912–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Ren X, Hurley JH. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J. 2010;29(6):1045–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Roxrud I, Raiborg C, Pedersen NM, Stang E, Stenmark H. An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor. J Cell Biol. 2008;180(6):1205–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Duncan LM, Piper S, Dodd RB, Saville MK, Sanderson CM, Luzio JP, et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 2006;25(8):1635–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Lauwers E, Jacob C, Andre B. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol. 2009;185(3):493–502.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Adhikari A, Chen ZJ. Diversity of polyubiquitin chains. Dev Cell. 2009;16(4):485–6.

    CAS  PubMed  Google Scholar 

  179. Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem. 2004;279(8):7055–63.

    CAS  PubMed  Google Scholar 

  180. McKanna JA, Haigler HT, Cohen S. Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci U S A. 1979;76(11):5689–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Carpentier JL, White MF, Orci L, Kahn CR. Direct visualization of the phosphorylated epidermal growth factor receptor during its internalization in A-431 cells. J Cell Biol. 1987;105:2751–62.

    CAS  PubMed  Google Scholar 

  182. Eden ER, White IJ, Tsapara A, Futter CE. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol. 2010;12(3):267–72.

    CAS  PubMed  Google Scholar 

  183. Ma YM, Boucrot E, Villen J, el Affar B, Gygi SP, Gottlinger HG, et al. Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation. J Biol Chem. 2007;282(13):9805–12.

    CAS  PubMed  Google Scholar 

  184. Tanaka N, Kaneko K, Asao H, Kasai H, Endo Y, Fujita T, et al. Possible involvement of a novel STAM-associated molecule “AMSH” in intracellular signal transduction mediated by cytokines. J Biol Chem. 1999;274(27):19129–35.

    CAS  PubMed  Google Scholar 

  185. McCullough J, Clague MJ, Urbe S. AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol. 2004;166(4):487–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R, Clague MJ, et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr Biol. 2006;16(2):160–5.

    CAS  PubMed  Google Scholar 

  187. Liu H, Buus R, Clague MJ, Urbe S. Regulation of ErbB2 receptor status by the proteasomal DUB POH1. PLoS One. 2009;4(5):e5544.

    PubMed Central  PubMed  Google Scholar 

  188. Pareja F, Ferraro DA, Rubin C, Cohen-Dvashi H, Zhang F, Aulmann S, et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene. 2012;31:4599.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Urbe S, McCullough J, Row P, Prior IA, Welchman R, Clague MJ. Control of growth factor receptor dynamics by reversible ubiquitination. Biochem Soc Trans. 2006;34(Pt 5):754–6.

    CAS  PubMed  Google Scholar 

  190. Mizuno E, Kobayashi K, Yamamoto A, Kitamura N, Komada M. A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic. 2006;7(8):1017–31.

    CAS  PubMed  Google Scholar 

  191. Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell. 2005;16(11):5163–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Row PE, Prior IA, McCullough J, Clague MJ, Urbe S. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem. 2006;281(18):12618–24.

    CAS  PubMed  Google Scholar 

  193. Niendorf S, Oksche A, Kisser A, Lohler J, Prinz M, Schorle H, et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol. 2007;27(13):5029–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Cao TT, Mays RW, von Zastrow M. Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits. J Biol Chem. 1998;273:24592–602.

    CAS  PubMed  Google Scholar 

  195. Confalonieri S, Salcini AE, Puri C, Tacchetti C, Di Fiore PP. Tyrosine phosphorylation of Eps15 is required for ligand-regulated, but not constitutive, endocytosis. J Cell Biol. 2000;150(4):905–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Connolly JL, Green SA, Greene LA. Comparison of rapid changes in surface morphology and coated pit formation of PC12 cells in response to nerve growth factor, epidermal growth factor, and dibutyryl cyclic AMP. J Cell Biol. 1984;98(2):457–65.

    CAS  PubMed  Google Scholar 

  197. Irie F, Okuno M, Pasquale EB, Yamaguchi Y. EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol. 2005;7(5):501–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 2006;25(1):1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Goh LK, Huang F, Kim W, Gygi S, Sorkin A. Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J Cell Biol. 2010;189(5):871–83.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NCI grants CA089151 and CA112219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Sorkin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sorkin, A., Fortian, A. (2015). Endocytosis and Endosomal Sorting of Receptor Tyrosine Kinases. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_7

Download citation

Publish with us

Policies and ethics