Skip to main content

Abstract

Receptor tyrosine kinases (RTKs) are well-known cell surface receptors that play important roles in normal cellular processes by binding to many growth factors and cytokines. Abnormal expression and mutations of these RTKs have been implicated in the development of many diseases including cancers. More recently, accumulated studies have shown that 11 of total 20 RTK subfamilies are detected in the nucleus, including the EGFR family, VEGFR family, FGFR family, insulin receptor family, Eph family, HGF receptor family, and ROR family as well as Trk, Ryk, and Mer receptor tyrosine kinases. These observations of nuclear-localized RTKs and functional studies demonstrate that RTKs function not only on the cell surface but also in the nucleus. Thus, it has become increasingly important to understand how the cell surface receptors are trafficked to the nucleus and how these receptors function in the nucleus. Several studies have shown that nuclear RTKs are involved in transcriptional regulation, DNA damage response, DNA replication, and drug resistance. In addition, a membrane-associated trafficking mechanism has been reported, which provides a comprehensive pathway for nuclear translocation of EGFR. This trafficking route may serve as a general mechanism for other cell surface receptors for the nuclear transport. In this chapter, we will focus the functional study of nuclear RTKs and summarize the physiological and pathological functions of RTKs in the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34. PubMed PMID: 20602996.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Yarden Y, Shilo BZ. SnapShot: EGFR signaling pathway. Cell. 2007;131(5):1018. PubMed PMID: 18045542.

    PubMed  Google Scholar 

  3. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–84. PubMed PMID: 19208461.

    CAS  PubMed  Google Scholar 

  4. Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer. 2001;37 Suppl 4:S3–8.

    CAS  PubMed  Google Scholar 

  5. von Zastrow M, Sorkin A. Signaling on the endocytic pathway. Curr Opin Cell Biol. 2007;19(4):436–45. PubMed PMID: 17662591.

    Google Scholar 

  6. Waterman H, Yarden Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett. 2001;490(3):142–52. PubMed PMID: 11223029.

    CAS  PubMed  Google Scholar 

  7. Du Y, Shen J, Hsu JL, Han Z, Hsu MC, Yang CC, et al. Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking. Oncogene. 2014;33:756. PubMed PMID: 23376851.

    CAS  PubMed  Google Scholar 

  8. Wang YN, Wang H, Yamaguchi H, Lee HJ, Lee HH, Hung MC. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun. 2010;399(4):498–504. PubMed PMID: 20674546, Pubmed Central PMCID: 2935258.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Wang YN, Yamaguchi H, Hsu JM, Hung MC. Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene. 2010;29(28):3997–4006. PubMed PMID: 20473332, Pubmed Central PMCID: 2904849.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Wang YN, Yamaguchi H, Huo L, Du Y, Lee HJ, Lee HH, et al. The translocon Sec61beta localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem. 2010;285(49):38720–9. PubMed PMID: 20937808, Pubmed Central PMCID: 2992305.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang YN, Hung MC. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell Biosci. 2012;2(1):13. PubMed PMID: 22520625, Pubmed Central PMCID: 3418567.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang YN, Lee HH, Lee HJ, Du Y, Yamaguchi H, Hung MC. Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2. J Biol Chem. 2012;287(20):16869–79. PubMed PMID: 22451678, Pubmed Central PMCID: 3351284.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37. PubMed PMID: 11252954.

    CAS  PubMed  Google Scholar 

  14. Avraham R, Yarden Y. Feedback regulation of EGFR signalling: decision making by early and delayed loops. Nat Rev Mol Cell Biol. 2011;12(2):104–17. PubMed PMID: 21252999.

    CAS  PubMed  Google Scholar 

  15. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7(7):505–16. PubMed PMID: 16829981.

    CAS  PubMed  Google Scholar 

  16. Lo HW, Hsu SC, Hung MC. EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res Treat. 2006;95(3):211–8. PubMed PMID: 16261406.

    CAS  PubMed  Google Scholar 

  17. Huang PH, Xu AM, White FM. Oncogenic EGFR signaling networks in glioma. Sci Signal. 2009;2(87):re6. PubMed PMID: 19738203.

    PubMed  Google Scholar 

  18. Lo HW, Hsu SC, Ali-Seyed M, Gunduz M, Xia W, Wei Y, et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell. 2005;7(6):575–89. PubMed PMID: 15950906.

    CAS  PubMed  Google Scholar 

  19. Irmer D, Funk JO, Blaukat A. EGFR kinase domain mutations - functional impact and relevance for lung cancer therapy. Oncogene. 2007;26(39):5693–701. PubMed PMID: 17353898.

    CAS  PubMed  Google Scholar 

  20. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;28 Suppl 1:S24–31. PubMed PMID: 19680293.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Linardou H, Dahabreh IJ, Bafaloukos D, Kosmidis P, Murray S. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat Rev. 2009;6(6):352–66. PubMed PMID: 19483740.

    CAS  Google Scholar 

  22. Alimandi M, Romano A, Curia MC, Muraro R, Fedi P, Aaronson SA, et al. Cooperative signaling of ErbB3 and ErbB2 in neoplastic transformation and human mammary carcinomas. Oncogene. 1995;10(9):1813–21. PubMed PMID: 7538656.

    CAS  PubMed  Google Scholar 

  23. Riese 2nd DJ, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays. 1998;20(1):41–8. PubMed PMID: 9504046.

    PubMed  Google Scholar 

  24. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9(7):463–75. PubMed PMID: 19536107.

    CAS  PubMed  Google Scholar 

  25. Du Y, Yang H, Xu Y, Cang X, Luo C, Mao Y, et al. Conformational transition and energy landscape of ErbB4 activated by neuregulin1beta: one microsecond molecular dynamics simulations. J Am Chem Soc. 2012;134(15):6720–31. PubMed PMID: 22316159.

    CAS  PubMed  Google Scholar 

  26. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001;3(9):802–8. PubMed PMID: 11533659.

    CAS  PubMed  Google Scholar 

  27. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell. 2004;6(3):251–61. PubMed PMID: 15380516.

    CAS  PubMed  Google Scholar 

  28. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene. 2009;28(43):3801–13. PubMed PMID: 19684613.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Dittmann K, Mayer C, Rodemann HP. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol. 2005;76(2):157–61. PubMed PMID: 16024112.

    CAS  PubMed  Google Scholar 

  30. Ni CY, Murphy MP, Golde TE, Carpenter G. Gamma-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science. 2001;294(5549):2179–81. PubMed PMID: 11679632.

    CAS  PubMed  Google Scholar 

  31. Gusterson B, Cowley G, Smith JA, Ozanne B. Cellular localisation of human epidermal growth factor receptor. Cell Biol Int Rep. 1984;8(8):649–58. PubMed PMID: 6090028.

    CAS  PubMed  Google Scholar 

  32. Kamio T, Shigematsu K, Sou H, Kawai K, Tsuchiyama H. Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol. 1990;21(3):277–82. PubMed PMID: 2312105.

    CAS  PubMed  Google Scholar 

  33. Marti U, Burwen SJ, Wells A, Barker ME, Huling S, Feren AM, et al. Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology. 1991;13(1):15–20. PubMed PMID: 1988335.

    CAS  PubMed  Google Scholar 

  34. Cao H, Lei ZM, Bian L, Rao CV. Functional nuclear epidermal growth factor receptors in human choriocarcinoma JEG-3 cells and normal human placenta. Endocrinology. 1995;136(7):3163–72. PubMed PMID: 7540549.

    CAS  PubMed  Google Scholar 

  35. Marti U, Ruchti C, Kampf J, Thomas GA, Williams ED, Peter HJ, et al. Nuclear localization of epidermal growth factor and epidermal growth factor receptors in human thyroid tissues. Thyroid. 2001;11(2):137–45. PubMed PMID: 11288982.

    CAS  PubMed  Google Scholar 

  36. Lipponen P, Eskelinen M. Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer. 1994;69(6):1120–5. PubMed PMID: 7911031, Pubmed Central PMCID: 1969432.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res. 2005;65(1):338–48. PubMed PMID: 15665312.

    CAS  PubMed  Google Scholar 

  38. Psyrri A, Yu Z, Weinberger PM, Sasaki C, Haffty B, Camp R, et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res. 2005;11(16):5856–62. PubMed PMID: 16115926.

    CAS  PubMed  Google Scholar 

  39. Wang YN, Yamaguchi H, Huo L, Du Y, Lee HJ, Lee HH, et al. The translocon SEC61{beta} localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus. J Biol Chem. 2010;285:38720. PubMed PMID: 20937808.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Klein C, Gensburger C, Freyermuth S, Nair BC, Labourdette G, Malviya AN. A 120 kDa nuclear phospholipase Cgamma1 protein fragment is stimulated in vivo by EGF signal phosphorylating nuclear membrane EGFR. Biochemistry. 2004;43(50):15873–83. PubMed PMID: 15595842.

    CAS  PubMed  Google Scholar 

  41. Cordero JB, Cozzolino M, Lu Y, Vidal M, Slatopolsky E, Stahl PD, et al. 1,25-Dihydroxyvitamin D down-regulates cell membrane growth- and nuclear growth-promoting signals by the epidermal growth factor receptor. J Biol Chem. 2002;277(41):38965–71. PubMed PMID: 12181310.

    CAS  PubMed  Google Scholar 

  42. Dittmann K, Mayer C, Fehrenbacher B, Schaller M, Raju U, Milas L, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem. 2005;280(35):31182–9. PubMed PMID: 16000298.

    CAS  PubMed  Google Scholar 

  43. de la Iglesia N, Konopka G, Puram SV, Chan JA, Bachoo RM, You MJ, et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev. 2008;22(4):449–62. PubMed PMID: 18258752, Pubmed Central PMCID: 2238667.

    PubMed Central  PubMed  Google Scholar 

  44. Lo HW, Cao X, Zhu H, Ali-Osman F. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res. 2010;8(2):232–45. PubMed PMID: 20145033, Pubmed Central PMCID: 2824777.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Piccione EC, Lieu TJ, Gentile CF, Williams TR, Connolly AJ, Godwin AK, et al. A novel epidermal growth factor receptor variant lacking multiple domains directly activates transcription and is overexpressed in tumors. Oncogene. 2011;31:2953. PubMed PMID: 21986942, Pubmed Central PMCID: 3368095.

    PubMed Central  PubMed  Google Scholar 

  46. Xie Y, Hung MC. Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun. 1994;203(3):1589–98. PubMed PMID: 7945309.

    CAS  PubMed  Google Scholar 

  47. Xia W, Liu Z, Zong R, Liu L, Zhao S, Bacus SS, et al. Truncated ErbB2 expressed in tumor cell nuclei contributes to acquired therapeutic resistance to ErbB2 kinase inhibitors. Mol Cancer Ther. 2011;10(8):1367–74. PubMed PMID: 21673090.

    CAS  PubMed  Google Scholar 

  48. Offterdinger M, Schofer C, Weipoltshammer K, Grunt TW. c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol. 2002;157(6):929–39. PubMed PMID: 12045181.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Thompson M, Lauderdale S, Webster MJ, Chong VZ, McClintock B, Saunders R, et al. Widespread expression of ErbB2, ErbB3 and ErbB4 in non-human primate brain. Brain Res. 2007;1139:95–109. PubMed PMID: 17280647.

    CAS  PubMed  Google Scholar 

  50. Srinivasan R, Gillett CE, Barnes DM, Gullick WJ. Nuclear expression of the c-erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Res. 2000;60(6):1483–7. PubMed PMID: 10749108.

    CAS  PubMed  Google Scholar 

  51. Mroczkowski B, Mosig G, Cohen S. ATP-stimulated interaction between epidermal growth factor receptor and supercoiled DNA. Nature. 1984;309(5965):270–3. PubMed PMID: 6325948.

    CAS  PubMed  Google Scholar 

  52. Basu M, Frick K, Sen-Majumdar A, Scher CD, Das M. EGF receptor-associated DNA-nicking activity is due to a Mr-100,000 dissociable protein. Nature. 1985;316(6029):640–1. PubMed PMID: 2993901.

    CAS  PubMed  Google Scholar 

  53. Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, Hung MC. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog. 2006;45(1):10–7. PubMed PMID: 16299810.

    CAS  PubMed  Google Scholar 

  54. Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML, et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res. 2008;36(13):4337–51. PubMed PMID: 18586824, Pubmed Central PMCID: 2490761.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q, Turkson J. A functional nuclear epidermal growth factor receptor, SRC and Stat3 heteromeric complex in pancreatic cancer cells. PLoS One. 2011;6(5):e19605. PubMed PMID: 21573184, Pubmed Central PMCID: 3088706.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Kim HP, Yoon YK, Kim JW, Han SW, Hur HS, Park J, et al. Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2. PLoS One. 2009;4(6):e5933. PubMed PMID: 19529774, Pubmed Central PMCID: 2691960.

    PubMed Central  PubMed  Google Scholar 

  57. Huang WC, Chen YJ, Li LY, Wei YL, Hsu SC, Tsai SL, et al. Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem. 2011;286(23):20558–68. PubMed PMID: 21487020, Pubmed Central PMCID: 3121497.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Huo L, Wang YN, Xia W, Hsu SC, Lai CC, Li LY, et al. RNA helicase A is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus. Proc Natl Acad Sci U S A. 2010;107(37):16125–30. PubMed PMID: 20802156.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Bitler BG, Goverdhan A, Schroeder JA. MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J Cell Sci. 2010;123:1716–23. PubMed PMID: 20406885.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Hu S, Xie Z, Onishi A, Yu X, Jiang L, Lin J, et al. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell. 2009;139(3):610–22. PubMed PMID: 19879846, Pubmed Central PMCID: 2774939.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Wang SC, Nakajima Y, Yu YL, Xia W, Chen CT, Yang CC, et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol. 2006;8(12):1359–68. PubMed PMID: 17115032.

    CAS  PubMed  Google Scholar 

  62. Dittmann K, Mayer C, Kehlbach R, Rothmund MC, Peter RH. Radiation-induced lipid peroxidation activates src kinase and triggers nuclear EGFR transport. Radiother Oncol. 2009;92(3):379–82. PubMed PMID: 19560222.

    CAS  PubMed  Google Scholar 

  63. Dittmann K, Mayer C, Kehlbach R, Rodemann HP. Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer. 2008;7:69. PubMed PMID: 18789131, Pubmed Central PMCID: 2546440.

    PubMed Central  PubMed  Google Scholar 

  64. Lee PC, Lee HJ, Kakadiya R, Sanjiv K, Su TL, Lee TC. Multidrug-resistant cells overexpressing P-glycoprotein are susceptible to DNA crosslinking agents due to attenuated Src/nuclear EGFR cascade-activated DNA repair activity. Oncogene. 2013;32:1144. PubMed PMID: 22525278.

    CAS  PubMed  Google Scholar 

  65. Das AK, Chen BP, Story MD, Sato M, Minna JD, Chen DJ, et al. Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma. Cancer Res. 2007;67(11):5267–74. PubMed PMID: 17545606.

    CAS  PubMed  Google Scholar 

  66. Ge H, Gong X, Tang CK. Evidence of high incidence of EGFRvIII expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis. Int J Cancer. 2002;98(3):357–61. PubMed PMID: 11920586.

    CAS  PubMed  Google Scholar 

  67. Edwards J, Traynor P, Munro AF, Pirret CF, Dunne B, Bartlett JM. The role of HER1-HER4 and EGFRvIII in hormone-refractory prostate cancer. Clin Cancer Res. 2006;12(1):123–30. PubMed PMID: 16397033.

    CAS  PubMed  Google Scholar 

  68. Beguelin W, Diaz Flaque MC, Proietti CJ, Cayrol F, Rivas MA, Tkach M, et al. Progesterone receptor induces ErbB-2 nuclear translocation to promote breast cancer growth via a novel transcriptional effect: ErbB-2 function as a coactivator of Stat3. Mol Cell Biol. 2010;30(23):5456–72. PubMed PMID: 20876300, Pubmed Central PMCID: 2976427.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Li X, Kuang J, Shen Y, Majer MM, Nelson CC, Parsawar K, et al. The atypical histone macroH2A1.2 interacts with HER-2 protein in cancer cells. J Biol Chem. 2012;287(27):23171–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH, et al. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res. 2011;71(12):4269–79. PubMed PMID: 21555369, Pubmed Central PMCID: 3117049.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Tan M, Jing T, Lan KH, Neal CL, Li P, Lee S, et al. Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell. 2002;9(5):993–1004. PubMed PMID: 12049736.

    CAS  PubMed  Google Scholar 

  72. Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99(8):628–38. PubMed PMID: 17440164.

    CAS  PubMed  Google Scholar 

  73. Dillon MF, Stafford AT, Kelly G, Redmond AM, McIlroy M, Crotty TB, et al. Cyclooxygenase-2 predicts adverse effects of tamoxifen: a possible mechanism of role for nuclear HER2 in breast cancer patients. Endocr Relat Cancer. 2008;15(3):745–53. PubMed PMID: 18469157.

    CAS  PubMed  Google Scholar 

  74. Schillaci R, Guzman P, Cayrol F, Beguelin W, Diaz Flaque MC, Proietti CJ, et al. Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer. BMC Cancer. 2012;12:74. PubMed PMID: 22356700, Pubmed Central PMCID: 3342900.

    PubMed Central  PubMed  Google Scholar 

  75. Sithanandam G, Anderson LM. The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther. 2008;15(7):413–48. PubMed PMID: 18404164, Pubmed Central PMCID: 2761714.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Zscheppang K, Korenbaum E, Bueter W, Ramadurai SM, Nielsen HC, Dammann CE. ErbB receptor dimerization, localization, and co-localization in mouse lung type II epithelial cells. Pediatr Pulmonol. 2006;41(12):1205–12. PubMed PMID: 17063476.

    PubMed  Google Scholar 

  77. Koumakpayi IH, Diallo JS, Le Page C, Lessard L, Gleave M, Begin LR, et al. Expression and nuclear localization of ErbB3 in prostate cancer. Clin Cancer Res. 2006;12(9):2730–7. PubMed PMID: 16675564.

    CAS  PubMed  Google Scholar 

  78. Cheng CJ, Ye XC, Vakar-Lopez F, Kim J, Tu SM, Chen DT, et al. Bone microenvironment and androgen status modulate subcellular localization of ErbB3 in prostate cancer cells. Mol Cancer Res. 2007;5(7):675–84. PubMed PMID: 17634423, Pubmed Central PMCID: 2000833.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Koumakpayi IH, Le Page C, Delvoye N, Saad F, Mes-Masson AM. Macropinocytosis inhibitors and Arf6 regulate ErbB3 nuclear localization in prostate cancer cells. Mol Carcinog. 2011;50(11):901–12. PubMed PMID: 21438025.

    CAS  PubMed  Google Scholar 

  80. Koumakpayi IH, Diallo JS, Le Page C, Lessard L, Filali-Mouhim A, Begin LR, et al. Low nuclear ErbB3 predicts biochemical recurrence in patients with prostate cancer. BJU Int. 2007;100(2):303–9. PubMed PMID: 17532856.

    CAS  PubMed  Google Scholar 

  81. Raabe TD, Deadwyler G, Varga JW, Devries GH. Localization of neuregulin isoforms and erbB receptors in myelinating glial cells. Glia. 2004;45(2):197–207. PubMed PMID: 14730713.

    PubMed  Google Scholar 

  82. Adilakshmi T, Ness-Myers J, Madrid-Aliste C, Fiser A, Tapinos N. A nuclear variant of ErbB3 receptor tyrosine kinase regulates ezrin distribution and Schwann cell myelination. J Neurosci. 2011;31(13):5106–19. PubMed PMID: 21451047, Pubmed Central PMCID: 3086203.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, Seite P. ErbB3(80 kDa), a nuclear variant of the ErbB3 receptor, binds to the Cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal. 2012;24(5):1074–85. PubMed PMID: 22261253.

    CAS  PubMed  Google Scholar 

  84. Williams CC, Allison JG, Vidal GA, Burow ME, Beckman BS, Marrero L, et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J Cell Biol. 2004;167(3):469–78. PubMed PMID: 15534001, Pubmed Central PMCID: 2172499.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Linggi B, Carpenter G. ErbB-4 s80 intracellular domain abrogates ETO2-dependent transcriptional repression. J Biol Chem. 2006;281(35):25373–80. PubMed PMID: 16815842.

    CAS  PubMed  Google Scholar 

  86. Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell. 2006;127(1):185–97. PubMed PMID: 17018285.

    CAS  PubMed  Google Scholar 

  87. Hughes DP, Thomas DG, Giordano TJ, Baker LH, McDonagh KT. Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res. 2004;64(6):2047–53. PubMed PMID: 15026342.

    CAS  PubMed  Google Scholar 

  88. Carpenter G. ErbB-4: mechanism of action and biology. Exp Cell Res. 2003;284(1):66–77. PubMed PMID: 12648466.

    CAS  PubMed  Google Scholar 

  89. Zeng F, Zhang MZ, Singh AB, Zent R, Harris RC. ErbB4 isoforms selectively regulate growth factor induced Madin-Darby canine kidney cell tubulogenesis. Mol Biol Cell. 2007;18(11):4446–56. PubMed PMID: 17761534, Pubmed Central PMCID: 2043549.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Icli B, Bharti A, Pentassuglia L, Peng X, Sawyer DB. ErbB4 localization to cardiac myocyte nuclei, and its role in myocyte DNA damage response. Biochem Biophys Res Commun. 2012;418(1):116–21. PubMed PMID: 22244893, Pubmed Central PMCID: 3273580.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Paatero I, Jokilammi A, Heikkinen PT, Iljin K, Kallioniemi OP, Jones FE, et al. Interaction with ErbB4 promotes hypoxia-inducible factor-1alpha signaling. J Biol Chem. 2012;287(13):9659–71. PubMed PMID: 22308027, Pubmed Central PMCID: 3322979.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29. PubMed PMID: 20094046.

    CAS  PubMed  Google Scholar 

  93. Gonzalez AM, Berry M, Maher PA, Logan A, Baird A. A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res. 1995;701(1–2):201–26. PubMed PMID: 8925285.

    CAS  PubMed  Google Scholar 

  94. Stachowiak MK, Moffett J, Joy A, Puchacz E, Florkiewicz R, Stachowiak EK. Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells. J Cell Biol. 1994;127(1):203–23. PubMed PMID: 7929563, Pubmed Central PMCID: 2120178.

    CAS  PubMed  Google Scholar 

  95. Stachowiak MK, Maher PA, Joy A, Mordechai E, Stachowiak EK. Nuclear accumulation of fibroblast growth factor receptors is regulated by multiple signals in adrenal medullary cells. Mol Biol Cell. 1996;7(8):1299–317. PubMed PMID: 8856671.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Reilly JF, Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol. 2001;152(6):1307–12. PubMed PMID: 11257130.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Peng H, Moffett J, Myers J, Fang X, Stachowiak EK, Maher P, et al. Novel nuclear signaling pathway mediates activation of fibroblast growth factor-2 gene by type 1 and type 2 angiotensin II receptors. Mol Biol Cell. 2001;12(2):449–62. PubMed PMID: 11179427, Pubmed Central PMCID: 30955.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell. 2005;16(1):14–23. PubMed PMID: 15509650.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Clarke WE, Berry M, Smith C, Kent A, Logan A. Coordination of fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-2 (FGF-2) trafficking to nuclei of reactive astrocytes around cerebral lesions in adult rats. Mol Cell Neurosci. 2001;17(1):17–30. PubMed PMID: 11161466.

    CAS  PubMed  Google Scholar 

  100. Fang X, Stachowiak EK, Dunham-Ems SM, Klejbor I, Stachowiak MK. Control of CREB-binding protein signaling by nuclear fibroblast growth factor receptor-1: a novel mechanism of gene regulation. J Biol Chem. 2005;280(31):28451–62. PubMed PMID: 15929978.

    CAS  PubMed  Google Scholar 

  101. Leadbeater WE, Gonzalez AM, Logaras N, Berry M, Turnbull JE, Logan A. Intracellular trafficking in neurones and glia of fibroblast growth factor-2, fibroblast growth factor receptor 1 and heparan sulphate proteoglycans in the injured adult rat cerebral cortex. J Neurochem. 2006;96(4):1189–200. PubMed PMID: 16417571.

    CAS  PubMed  Google Scholar 

  102. Bilak MM, Hossain WA, Morest DK. Intracellular fibroblast growth factor produces effects different from those of extracellular application on development of avian cochleovestibular ganglion cells in vitro. J Neurosci Res. 2003;71(5):629–47. PubMed PMID: 12584722.

    CAS  PubMed  Google Scholar 

  103. Klimaschewski L, Meisinger C, Grothe C. Localization and regulation of basic fibroblast growth factor (FGF-2) and FGF receptor-1 in rat superior cervical ganglion after axotomy. J Neurobiol. 1999;38(4):499–506. PubMed PMID: 10084685.

    CAS  PubMed  Google Scholar 

  104. Horbinski C, Stachowiak EK, Chandrasekaran V, Miuzukoshi E, Higgins D, Stachowiak MK. Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. J Neurochem. 2002;80(1):54–63. PubMed PMID: 11796743.

    CAS  PubMed  Google Scholar 

  105. Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, et al. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed-forward-and-gate” signaling module that controls cell growth and differentiation. J Cell Biochem. 2003;90(4):662–91. PubMed PMID: 14587025.

    CAS  PubMed  Google Scholar 

  106. Peng H, Myers J, Fang X, Stachowiak EK, Maher PA, Martins GG, et al. Integrative nuclear FGFR1 signaling (INFS) pathway mediates activation of the tyrosine hydroxylase gene by angiotensin II, depolarization and protein kinase C. J Neurochem. 2002;81(3):506–24. PubMed PMID: 12065659.

    CAS  PubMed  Google Scholar 

  107. Baron O, Forthmann B, Lee YW, Terranova C, Ratzka A, Stachowiak EK, et al. Cooperation of nuclear fibroblast growth factor receptor 1 and nurr1 offers new interactive mechanism in postmitotic development of mesencephalic dopaminergic neurons. J Biol Chem. 2012;287(24):19827–40. PubMed PMID: 22514272.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lee YW, Terranova C, Birkaya B, Narla S, Kehoe D, Parikh A, et al. A novel nuclear FGF Receptor-1 partnership with retinoid and Nur receptors during developmental gene programming of embryonic stem cells. J Cell Biochem. 2012;113:2920. PubMed PMID: 22539306.

    CAS  PubMed  Google Scholar 

  109. Chioni AM, Grose R. FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. J Cell Biol. 2012;197(6):801–17. PubMed PMID: 22665522, Pubmed Central PMCID: 3373409.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development. 2004;131(15):3627–36. PubMed PMID: 15229180.

    CAS  PubMed  Google Scholar 

  111. Bagheri-Fam S, Sim H, Bernard P, Jayakody I, Taketo MM, Scherer G, et al. Loss of Fgfr2 leads to partial XY sex reversal. Dev Biol. 2008;314(1):71–83. PubMed PMID: 18155190.

    CAS  PubMed  Google Scholar 

  112. Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol. 2008;321(1):77–87. PubMed PMID: 18585375, Pubmed Central PMCID: 2582391.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Giulianelli S, Cerliani JP, Lamb CA, Fabris VT, Bottino MC, Gorostiaga MA, et al. Carcinoma-associated fibroblasts activate progesterone receptors and induce hormone independent mammary tumor growth: A role for the FGF-2/FGFR-2 axis. Int J Cancer. 2008;123(11):2518–31. PubMed PMID: 18767044.

    CAS  PubMed  Google Scholar 

  114. Sun S, Jiang Y, Zhang G, Song H, Zhang X, Zhang Y, et al. Increased expression of fibroblastic growth factor receptor 2 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol. 2012;105(8):773–9. PubMed PMID: 22006548.

    CAS  PubMed  Google Scholar 

  115. Martin AJ, Grant A, Ashfield AM, Palmer CN, Baker L, Quinlan PR, et al. FGFR2 protein expression in breast cancer: nuclear localisation and correlation with patient genotype. BMC Res Notes. 2011;4:72. PubMed PMID: 21418638, Pubmed Central PMCID: 3073906.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Cerliani JP, Guillardoy T, Giulianelli S, Vaque JP, Gutkind JS, Vanzulli SI, et al. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer. Cancer Res. 2011;71(10):3720–31. PubMed PMID: 21464042.

    CAS  PubMed  Google Scholar 

  117. Sabbieti MG, Marchetti L, Gabrielli MG, Menghi M, Materazzi S, Menghi G, et al. Prostaglandins differently regulate FGF-2 and FGF receptor expression and induce nuclear translocation in osteoblasts via MAPK kinase. Cell Tissue Res. 2005;319(2):267–78. PubMed PMID: 15654655.

    CAS  PubMed  Google Scholar 

  118. Marchetti L, Sabbieti MG, Agas D, Menghi M, Materazzi G, Menghi G, et al. PGF2alpha increases FGF-2 and FGFR2 trafficking in Py1a rat osteoblasts via clathrin independent and importin beta dependent pathway. J Cell Biochem. 2006;97(6):1379–92. PubMed PMID: 16365892.

    CAS  PubMed  Google Scholar 

  119. Gatius S, Velasco A, Azueta A, Santacana M, Pallares J, Valls J, et al. FGFR2 alterations in endometrial carcinoma. Mod Pathol. 2011;24(11):1500–10. PubMed PMID: 21725289.

    CAS  PubMed  Google Scholar 

  120. Behrens C, Lin HY, Lee JJ, Raso MG, Hong WK, Wistuba II, et al. Immunohistochemical expression of basic fibroblast growth factor and fibroblast growth factor receptors 1 and 2 in the pathogenesis of lung cancer. Clin Cancer Res. 2008;14(19):6014–22. PubMed PMID: 18829480.

    CAS  PubMed  Google Scholar 

  121. Johnston CL, Cox HC, Gomm JJ, Coombes RC. Fibroblast growth factor receptors (FGFRs) localize in different cellular compartments. A splice variant of FGFR-3 localizes to the nucleus. J Biol Chem. 1995;270(51):30643–50.

    CAS  PubMed  Google Scholar 

  122. Zammit C, Barnard R, Gomm J, Coope R, Shousha S, Coombes C, et al. Altered intracellular localization of fibroblast growth factor receptor 3 in human breast cancer. J Pathol. 2001;194(1):27–34. PubMed PMID: 11329138.

    CAS  PubMed  Google Scholar 

  123. Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell. 2011;22(20):3861–73. PubMed PMID: 21865593, Pubmed Central PMCID: 3192865.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Rotterud R, Fossa SD, Nesland JM. Protein networking in bladder cancer: immunoreactivity for FGFR3, EGFR, ERBB2, KAI1, PTEN, and RAS in normal and malignant urothelium. Histol Histopathol. 2007;22(4):349–63. PubMed PMID: 17290345.

    CAS  PubMed  Google Scholar 

  125. Martinez-Torrecuadrada JL, Cheung LH, Lopez-Serra P, Barderas R, Canamero M, Ferreiro S, et al. Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis. Mol Cancer Ther. 2008;7(4):862–73. PubMed PMID: 18413799.

    CAS  PubMed  Google Scholar 

  126. Kokkinakis DM, Rushing EJ, Shareef MM, Ahmed MM, Yang S, Singha UK, et al. Physiology and gene expression characteristics of carcinogen-initiated and tumor-transformed glial progenitor cells derived from the CNS of methylnitrosourea (MNU)-treated Sprague-Dawley rats. J Neuropathol Exp Neurol. 2004;63(11):1182–99. PubMed PMID: 15581186.

    CAS  PubMed  Google Scholar 

  127. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76. PubMed PMID: 12778165.

    CAS  PubMed  Google Scholar 

  128. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71. PubMed PMID: 16633338.

    CAS  PubMed  Google Scholar 

  129. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13(1):9–22. PubMed PMID: 9872925.

    CAS  PubMed  Google Scholar 

  130. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19(10):2003–12. PubMed PMID: 17658244.

    CAS  PubMed  Google Scholar 

  131. Rahimi N. VEGFR-1 and VEGFR-2: two non-identical twins with a unique physiognomy. Front Biosci. 2006;11:818–29. PubMed PMID: 16146773, Pubmed Central PMCID: 1360224.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sato Y, Kanno S, Oda N, Abe M, Ito M, Shitara K, et al. Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Ann N Y Acad Sci. 2000;902:201–5. discussion 5–7, PubMed PMID: 10865839.

    CAS  PubMed  Google Scholar 

  133. Luttun A, Tjwa M, Carmeliet P. Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann N Y Acad Sci. 2002;979:80–93. PubMed PMID: 12543719.

    CAS  PubMed  Google Scholar 

  134. Ilan N, Tucker A, Madri JA. Vascular endothelial growth factor expression, beta-catenin tyrosine phosphorylation, and endothelial proliferative behavior: a pathway for transformation? Lab Invest. 2003;83(8):1105–15. PubMed PMID: 12920240.

    CAS  PubMed  Google Scholar 

  135. Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK, et al. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med. 2007;4(6):e186. PubMed PMID: 17550303, Pubmed Central PMCID: 1885450.

    PubMed Central  PubMed  Google Scholar 

  136. Andersson MK, Goransson M, Olofsson A, Andersson C, Aman P. Nuclear expression of FLT1 and its ligand PGF in FUS-DDIT3 carrying myxoid liposarcomas suggests the existence of an intracrine signaling loop. BMC Cancer. 2010;10:249. PubMed PMID: 20515481, Pubmed Central PMCID: 2889895.

    PubMed Central  PubMed  Google Scholar 

  137. Hagedorn A, Germann PG, Junker-Walker U, Tomovic A, Seewald W, Polkinghorne A, et al. Immunohistochemical study about the Flt-1/VEGFR1 expression in the gastrointestinal tract of mouse, rat, dog, swine and monkey. Exp Toxicol Pathol. 2005;57(2):149–59. PubMed PMID: 16325525.

    CAS  PubMed  Google Scholar 

  138. Cai J, Chen Z, Ruan Q, Han S, Liu L, Qi X, et al. Gamma-Secretase and presenilin mediate cleavage and phosphorylation of vascular endothelial growth factor receptor-1. J Biol Chem. 2011;286(49):42514–23. PubMed PMID: 22016384, Pubmed Central PMCID: 3234916.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Cai J, Jiang WG, Grant MB, Boulton M. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem. 2006;281(6):3604–13. PubMed PMID: 16339148.

    CAS  PubMed  Google Scholar 

  140. Feng Y, Venema VJ, Venema RC, Tsai N, Caldwell RB. VEGF induces nuclear translocation of Flk-1/KDR, endothelial nitric oxide synthase, and caveolin-1 in vascular endothelial cells. Biochem Biophys Res Commun. 1999;256(1):192–7. PubMed PMID: 10066445.

    CAS  PubMed  Google Scholar 

  141. Dardik R, Inbal A. Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res. 2006;312(16):2973–82. PubMed PMID: 16914140.

    CAS  PubMed  Google Scholar 

  142. Shay-Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E, et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A. 2002;99(14):9462–7. PubMed PMID: 12080144, Pubmed Central PMCID: 123163.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Santos SC, Miguel C, Domingues I, Calado A, Zhu Z, Wu Y, et al. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing. Exp Cell Res. 2007;313(8):1561–74. PubMed PMID: 17382929.

    CAS  PubMed  Google Scholar 

  144. Domingues I, Rino J, Demmers JA, de Lanerolle P, Santos SC. VEGFR2 translocates to the nucleus to regulate its own transcription. PLoS One. 2011;6(9):e25668. PubMed PMID: 21980525, Pubmed Central PMCID: 3182252.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Blazquez C, Cook N, Micklem K, Harris AL, Gatter KC, Pezzella F. Phosphorylated KDR can be located in the nucleus of neoplastic cells. Cell Res. 2006;16(1):93–8. PubMed PMID: 16467880.

    CAS  PubMed  Google Scholar 

  146. Zhang Z, Neiva KG, Lingen MW, Ellis LM, Nor JE. VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ. 2010;17(3):499–512. PubMed PMID: 19834490, Pubmed Central PMCID: 2822115.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30(6):586–623. PubMed PMID: 19752219.

    CAS  PubMed  Google Scholar 

  148. Gualco E, Wang JY, Del Valle L, Urbanska K, Peruzzi F, Khalili K, et al. IGF-IR in neuroprotection and brain tumors. Front Biosci. 2009;14:352–75. PubMed PMID: 19273072, Pubmed Central PMCID: 2679154.

    CAS  Google Scholar 

  149. Pollak M. The insulin receptor/insulin-like growth factor receptor family as a therapeutic target in oncology. Clin Cancer Res. 2012;18(1):40–50. PubMed PMID: 22215905.

    CAS  PubMed  Google Scholar 

  150. Podlecki DA, Smith RM, Kao M, Tsai P, Huecksteadt T, Brandenburg D, et al. Nuclear translocation of the insulin receptor. A possible mediator of insulin’s long term effects. J Biol Chem. 1987;262(7):3362–8. PubMed PMID: 3546306.

    CAS  PubMed  Google Scholar 

  151. Nelson JD, LeBoeuf RC, Bomsztyk K. Direct recruitment of insulin receptor and ERK signaling cascade to insulin-inducible gene loci. Diabetes. 2011;60(1):127–37. PubMed PMID: 20929976, Pubmed Central PMCID: 3012164.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Chen CW, Roy D. Up-regulation of nuclear IGF-I receptor by short term exposure of stilbene estrogen, diethylstilbestrol. Mol Cell Endocrinol. 1996;118(1–2):1–8. PubMed PMID: 8735585.

    CAS  PubMed  Google Scholar 

  153. Gletsu NA, Field CJ, Clandinin MT. Obese mice have higher insulin receptor levels in the hepatocyte cell nucleus following insulin stimulation in vivo with an oral glucose meal. Biochim Biophys Acta. 1999;1454(3):251–60. PubMed PMID: 10452959.

    CAS  PubMed  Google Scholar 

  154. Seol KC, Kim SJ. Nuclear matrix association of insulin receptor and IRS-1 by insulin in osteoblast-like UMR-106 cells. Biochem Biophys Res Commun. 2003;306(4):898–904. PubMed PMID: 12821126.

    CAS  PubMed  Google Scholar 

  155. Aleksic T, Chitnis MM, Perestenko OV, Gao S, Thomas PH, Turner GD, et al. Type 1 insulin-like growth factor receptor translocates to the nucleus of human tumor cells. Cancer Res. 2010;70(16):6412–9. PubMed PMID: 20710042, Pubmed Central PMCID: 2981028.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Bodzin AS, Wei Z, Hurtt R, Gu T, Doria C. Gefitinib resistance in HCC mahlavu cells: upregulation of CD133 expression, activation of IGF-1R signaling pathway, and enhancement of IGF-1R nuclear translocation. J Cell Physiol. 2012;227(7):2947–52. PubMed PMID: 21959795.

    CAS  PubMed  Google Scholar 

  157. Deribe YL, Pawson T, Dikic I. Post-translational modifications in signal integration. Nat Struct Mol Biol. 2010;17(6):666–72. PubMed PMID: 20495563.

    CAS  PubMed  Google Scholar 

  158. Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J, et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal. 2010;3(108):ra10. PubMed PMID: 20145208.

    PubMed  Google Scholar 

  159. Deng H, Lin Y, Badin M, Vasilcanu D, Stromberg T, Jernberg-Wiklund H, et al. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. Biochem Biophys Res Commun. 2011;404(2):667–71. PubMed PMID: 21147068.

    CAS  PubMed  Google Scholar 

  160. Warsito D, Sjostrom S, Andersson S, Larsson O, Sehat B. Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO Rep. 2012;13(3):244–50. PubMed PMID: 22261717, Pubmed Central PMCID: 3323138.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Hoa N, Tsui S, Afifiyan NF, Sinha Hikim A, Li B, Douglas RS, et al. Nuclear targeting of IGF-1 receptor in orbital fibroblasts from Graves’ disease: apparent role of ADAM17. PLoS One. 2012;7(4):e34173. PubMed PMID: 22506015, Pubmed Central PMCID: 3323600.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Comoglio PM, Boccaccio C. The HGF receptor family: unconventional signal transducers for invasive cell growth. Genes Cells. 1996;1(4):347–54. PubMed PMID: 9135079.

    CAS  PubMed  Google Scholar 

  163. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25. PubMed PMID: 14685170.

    CAS  PubMed  Google Scholar 

  164. Orton TC, Doughty SE, Kalinowski AE, Lord PG, Wadsworth PF. Expression of growth factors and growth factor receptors in the liver of C57BL/10 J mice following administration of phenobarbitone. Carcinogenesis. 1996;17(5):973–81. PubMed PMID: 8640946.

    CAS  PubMed  Google Scholar 

  165. Pozner-Moulis S, Pappas DJ, Rimm DL. Met, the hepatocyte growth factor receptor, localizes to the nucleus in cells at low density. Cancer Res. 2006;66(16):7976–82. PubMed PMID: 16912172.

    CAS  PubMed  Google Scholar 

  166. Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T, et al. c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem. 2008;283(7):4344–51. PubMed PMID: 18073207, Pubmed Central PMCID: 2825875.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Matteucci E, Bendinelli P, Desiderio MA. Nuclear localization of active HGF receptor Met in aggressive MDA-MB231 breast carcinoma cells. Carcinogenesis. 2009;30(6):937–45. PubMed PMID: 19357348.

    CAS  PubMed  Google Scholar 

  168. Previdi S, Maroni P, Matteucci E, Broggini M, Bendinelli P, Desiderio MA. Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and beta-catenin/Wnt pathways. Eur J Cancer. 2010;46(9):1679–91. PubMed PMID: 20350802.

    CAS  PubMed  Google Scholar 

  169. Sanada Y, Osada S, Tokuyama Y, Tanaka Y, Takahashi T, Yamaguchi K, et al. Critical role of c-Met and Ki67 in progress of biliary carcinoma. Am Surg. 2010;76(4):372–9. PubMed PMID: 20420246.

    PubMed  Google Scholar 

  170. Tretiakova M, Salama AK, Karrison T, Ferguson MK, Husain AN, Vokes EE, et al. MET and phosphorylated MET as potential biomarkers in lung cancer. J Environ Pathol Toxicol Oncol. 2011;30(4):341–54. PubMed PMID: 22181983.

    CAS  PubMed  Google Scholar 

  171. Levallet G, Vaisse-Lesteven M, Le Stang N, Ilg AG, Brochard P, Astoul P, et al. Plasma cell membrane localization of c-MET predicts longer survival in patients with malignant mesothelioma: a series of 157 cases from the MESOPATH Group. J Thorac Oncol. 2012;7(3):599–606. PubMed PMID: 22246193.

    PubMed  Google Scholar 

  172. Wang MH, Padhye SS, Guin S, Ma Q, Zhou YQ. Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacol Sin. 2010;31(9):1181–8. PubMed PMID: 20694025.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Danilkovitch-Miagkova A, Angeloni D, Skeel A, Donley S, Lerman M, Leonard EJ. Integrin-mediated RON growth factor receptor phosphorylation requires tyrosine kinase activity of both the receptor and c-Src. J Biol Chem. 2000;275(20):14783–6. PubMed PMID: 10747844.

    CAS  PubMed  Google Scholar 

  174. Feres KJ, Ischenko I, Hayman MJ. The RON receptor tyrosine kinase promotes MSP-independent cell spreading and survival in breast epithelial cells. Oncogene. 2009;28(2):279–88. PubMed PMID: 18836480.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Liu HS, Hsu PY, Lai MD, Chang HY, Ho CL, Cheng HL, et al. An unusual function of RON receptor tyrosine kinase as a transcriptional regulator in cooperation with EGFR in human cancer cells. Carcinogenesis. 2010;31(8):1456–64. PubMed PMID: 20498137, Pubmed Central PMCID: 2915629.

    PubMed Central  PubMed  Google Scholar 

  176. Rebagay G, Yan S, Liu C, Cheung NK. ROR1 and ROR2 in human malignancies: potentials for targeted therapy. Front Oncol. 2012;2:34. PubMed PMID: 22655270.

    PubMed Central  PubMed  Google Scholar 

  177. Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol. 2008;18(11):536–44. PubMed PMID: 18848778.

    CAS  PubMed  Google Scholar 

  178. Tseng HC, Lyu PC, Lin WC. Nuclear localization of orphan receptor protein kinase (Ror1) is mediated through the juxtamembrane domain. BMC Cell Biol. 2010;11:48. PubMed PMID: 20587074.

    PubMed Central  PubMed  Google Scholar 

  179. Tseng HC, Kao HW, Ho MR, Chen YR, Lin TW, Lyu PC, et al. Cytoskeleton network and cellular migration modulated by nuclear-localized receptor tyrosine kinase ROR1. Anticancer Res. 2011;31(12):4239–49. PubMed PMID: 22199287.

    CAS  PubMed  Google Scholar 

  180. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10(3):165–80. PubMed PMID: 20179713.

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol. 2002;3(7):475–86. PubMed PMID: 12094214.

    CAS  PubMed  Google Scholar 

  182. Kuroda C, Kubota S, Kawata K, Aoyama E, Sumiyoshi K, Oka M, et al. Distribution, gene expression, and functional role of EphA4 during ossification. Biochem Biophys Res Commun. 2008;374(1):22–7. PubMed PMID: 18601903.

    CAS  PubMed  Google Scholar 

  183. Halford MM, Stacker SA. Revelations of the RYK receptor. Bioessays. 2001;23(1):34–45. PubMed PMID: 11135307.

    CAS  PubMed  Google Scholar 

  184. Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci. 2006;119(Pt 3):395–402. PubMed PMID: 16443747.

    CAS  PubMed  Google Scholar 

  185. Lyu J, Yamamoto V, Lu W. Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev Cell. 2008;15(5):773–80. PubMed PMID: 19000841.

    CAS  PubMed  Google Scholar 

  186. Lyu J, Wesselschmidt RL, Lu W. Cdc37 regulates Ryk signaling by stabilizing the cleaved Ryk intracellular domain. J Biol Chem. 2009;284(19):12940–8. PubMed PMID: 19269974.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Zhong J, Kim HT, Lyu J, Yoshikawa K, Nakafuku M, Lu W. The Wnt receptor Ryk controls specification of GABAergic neurons versus oligodendrocytes during telencephalon development. Development. 2011;138(3):409–19. PubMed PMID: 21205786, Pubmed Central PMCID: 3014630.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11(3):272–80. PubMed PMID: 11399424.

    CAS  PubMed  Google Scholar 

  189. Klesse LJ, Parada LF. Trks: signal transduction and intracellular pathways. Microsc Res Tech. 1999;45(4–5):210–6. PubMed PMID: 10383113.

    CAS  PubMed  Google Scholar 

  190. Moughal NA, Waters C, Sambi B, Pyne S, Pyne NJ. Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cell Signal. 2004;16(1):127–36. PubMed PMID: 14607283.

    CAS  PubMed  Google Scholar 

  191. Gong A, Zhang Z, Xiao D, Yang Y, Wang Y, Chen Y. Localization of phosphorylated TrkA in carrier vesicles involved in its nuclear translocation in U251 cell line. Sci China C Life Sci. 2007;50(2):141–6. PubMed PMID: 17447019.

    CAS  PubMed  Google Scholar 

  192. Bonacchi A, Taddei ML, Petrai I, Efsen E, Defranco R, Nosi D, et al. Nuclear localization of TRK-A in liver cells. Histol Histopathol. 2008;23(3):327–40. PubMed PMID: 18072090.

    CAS  PubMed  Google Scholar 

  193. Linger RM, DeRyckere D, Brandao L, Sawczyn KK, Jacobsen KM, Liang X, et al. Mer receptor tyrosine kinase is a novel therapeutic target in pediatric B-cell acute lymphoblastic leukemia. Blood. 2009;114(13):2678–87. PubMed PMID: 19643988.

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Migdall-Wilson J, Bates C, Schlegel J, Brandao L, Linger RM, DeRyckere D, et al. Prolonged exposure to a Mer ligand in leukemia: Gas6 favors expression of a partial Mer glycoform and reveals a novel role for Mer in the nucleus. PLoS One. 2012;7(2):e31635. PubMed PMID: 22363695, Pubmed Central PMCID: 3282750.

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276–312. PubMed PMID: 18483217, Pubmed Central PMCID: 2732412.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol. 2003;23(11):4013–25. PubMed PMID: 12748302, Pubmed Central PMCID: 155222.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Chen L, Acciani T, Le Cras T, Lutzko C, Perl AK. Dynamic regulation of platelet-derived growth factor receptor alpha expression in alveolar fibroblasts during realveolarization. Am J Respir Cell Mol Biol. 2012;47(4):517–27. PubMed PMID: 22652199, Pubmed Central PMCID: 3488620.

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Mittar S, Ulyatt C, Howell GJ, Bruns AF, Zachary I, Walker JH, et al. VEGFR1 receptor tyrosine kinase localization to the Golgi apparatus is calcium-dependent. Exp Cell Res. 2009;315(5):877–89. PubMed PMID: 19162007.

    CAS  PubMed  Google Scholar 

  199. Kermorgant S, Parker PJ. Receptor trafficking controls weak signal delivery: a strategy used by c-Met for STAT3 nuclear accumulation. J Cell Biol. 2008;182(5):855–63. PubMed PMID: 18779368.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Akgoz M, Kalyanaraman V, Gautam N. Receptor-mediated reversible translocation of the G protein betagamma complex from the plasma membrane to the Golgi complex. J Biol Chem. 2004;279(49):51541–4. PubMed PMID: 15448129.

    CAS  PubMed  Google Scholar 

  201. Robertson BJ, Park RD, Snider MD. Role of vesicular traffic in the transport of surface transferrin receptor to the Golgi complex in cultured human cells. Arch Biochem Biophys. 1992;292(1):190–8. PubMed PMID: 1727635.

    CAS  PubMed  Google Scholar 

  202. Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, et al. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem. 2009;284(52):36592–604. PubMed PMID: 19840943.

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Cao X, Zhu H, Ali-Osman F, Lo HW. EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis. Mol Cancer. 2011;10:26. PubMed PMID: 21388543.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Liccardi G, Hartley JA, Hochhauser D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 2011;71(3):1103–14. PubMed PMID: 21266349, Pubmed Central PMCID: 3033323.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Hadzisejdic I, et al. Nuclear EGFR in ductal invasive breast cancer: correlation with cyclin-D1 and prognosis. Mod Pathol. 2010;23(3):393–403.

    Google Scholar 

  206. Li CF, et al. EGFR Nuclear Import in Gallbladder Carcinoma: Nuclear Phosphorylated EGFR Upregulates iNOS Expression and Confers Independent Prognostic Impact. Ann Surg Oncol. 2011.

    Google Scholar 

  207. Nowsheen S, Bonner JA, Yang ES. The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother Oncol. 2011;99(3):331–8.

    Google Scholar 

  208. Dekanic A, et al. Strong nuclear EGFR expression in colorectal carcinomas is associated with cyclin-D1 but not with gene EGFR amplification. Diagn Pathol. 2011;6:108.

    Google Scholar 

  209. Xia W, et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog. 2009;48(7):610–7.

    Google Scholar 

  210. Hoshino M, et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology. 2007;74(1):15–21.

    Google Scholar 

  211. Kim JH, et al. Expression of HER-2 and nuclear localization of HER-3 protein in canine mammary tumors: histopathological and immunohistochemical study. Vet J. 2011;189(3):318–22.

    Google Scholar 

  212. Feng S, et al. Nuclear localization of a complex of fibroblast growth factor(FGF)-1 and an NH2-terminal fragment of FGF receptor isoforms R4 and R1alpha in human liver cells. Biochim Biophys Acta. 1996;1310(1):67–73.

    Google Scholar 

  213. Stachowiak EK, et al. Nuclear accumulation of fibroblast growth factor receptors in human glial cells--association with cell proliferation. Oncogene. 1997;14(18):2201–11.

    Google Scholar 

Download references

Acknowledgments

This study was funded in part by grants from the National Institutes of Health (grants R01 CA109311, PO1 CA099031, and CCSG CA16672), National Breast Cancer Foundation, Inc., Breast Cancer Research Foundation, Patel Memorial Breast Cancer Endowment Fund, The University of Texas MD Anderson-China Medical University and Hospital Sister Institution Fund, Ministry of Health and Welfare, China Medical University Hospital Cancer Research Center of Excellence (MOHW103- TD-B-111-03; Taiwan), Program for Stem Cell and Regenerative Medicine Frontier Research (NSC102-2321-B-039-001; Taiwan), International Research-Intensive Centers of Excellence in Taiwan (NSC103-2911-I-002-303), and Center for Biological Pathways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mien-Chie Hung Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Du, Y., Hsu, J.L., Wang, YN., Hung, MC. (2015). Nuclear Functions of Receptor Tyrosine Kinases. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_5

Download citation

Publish with us

Policies and ethics