Skip to main content

Receptor Tyrosine Kinase Signal Transduction and the Molecular Basis of Signalling Specificity

  • Chapter
  • First Online:
Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease

Abstract

Present in all multicellular organisms, receptor tyrosine kinases (RTKs) play a major role in regulating critical cellular processes and in their alterations in cancer and metabolic diseases. Since the cloning of the first RTK (the EGF receptor) 30 years ago, considerable progress has been made in the structural biology of both the extracellular domains and the tyrosine kinase domains of many members of the RTK superfamily. These studies have firmly established the general paradigm that ligand-bound RTKs function as dimeric allosteric enzymes and that several exhibit negative cooperativity in binding. Much work remains to be done to understand the exact nature of the allosteric mechanisms that transmit the extracellular conformational changes to the kinase domains. The activation of the kinase domains results in intermolecular transphosphorylation which allows recruitment of substrates that have affinity for phosphorylated tyrosyls through SH2 and PTB domains, resulting in the assembly of a signal transduction particle and in the activation of complex intracellular phosphorylation cascades. While we have learned much about the details of the intracellular signalling networks, their modular structure and their general organisation including negative feedbacks, the molecular mechanisms of signalling specificity by the various growth factors through their distinct receptors remain an enigma given the commonality of the signalling network that links the activated receptors to the biological endpoints including the regulation of the cell cycle and apoptosis. Systems biology approaches are clearly needed for a quantitative understanding of the combinatorial nature of the RTKs signalling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen S, Levi-Montalcini R, Hamburger V. A nerve growth-stimulating factor isolated from Sarcomas 37 and 180. Proc Natl Acad Sci. 1954;40:1014–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962;237:1555–62.

    CAS  PubMed  Google Scholar 

  3. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee Y, Yarden Y, Libermann TA, Schlessinger J, Downward J, Mayes ELV, Whittle N, Waterfield M, Seeburg P. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature. 1984;309:418–25.

    CAS  PubMed  Google Scholar 

  4. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzelli LM, Dull TJ, Grey A, Coussens L, Liao Y-C, Tsubokawa M, Grunfeld C, Rosen OM, Ramachandran J. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313:756–61.

    CAS  PubMed  Google Scholar 

  5. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, Ou J-H, Masiarz F, Kan YW, Goldfine ID, Roth RA, Rutter WJ. The human Insulin receptor cDNA: the structural basis for hormone - activated transmembrane signalling. Cell. 1985;40:747–58.

    CAS  PubMed  Google Scholar 

  6. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y. Insulin-like growth factor-I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5:2503–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Coussens L, Van Beveren C, Smith D, Chen E, Mitchell RL, Isacke CM, Verma IM, Ullrich A. Structural alteration of viral homologue of receptor proto-oncogene fms at carboxyl terminus. Nature. 1986;321:277–81.

    Google Scholar 

  8. Yarden Y, Escobedo JA, Kwang W-J, Yang-Feng TL, Daniel TO, Tremble PM, Chen EY, Ando ME, Harkins NR, Francke U, Fried UA, Ullrich A, Williams LT. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth-factor receptors. Nature. 1986;323:226–32.

    CAS  PubMed  Google Scholar 

  9. Yarden Y, Ullrich A. Growth-factor receptor tyrosine kinases. Ann Rev Biochem. 1988;57:443–78.

    CAS  PubMed  Google Scholar 

  10. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990;61:203–12.

    CAS  PubMed  Google Scholar 

  11. Schlessinger J, Ullrich A. Growth factor signalling by receptor tyrosine kinases. Neuron. 1992;9:383–91.

    CAS  PubMed  Google Scholar 

  12. Van der Geer P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Ann Rev Cell Bio. 1994;10:251–337.

    Google Scholar 

  13. Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80:213–23.

    CAS  PubMed  Google Scholar 

  14. Schlessinger J. Cell signalling by receptor tyrosine kinases. Cell. 2000;103:211–25.

    CAS  PubMed  Google Scholar 

  15. Hunter T. Signaling – 2000 and beyond. Cell. 2000;100:113–27.

    CAS  PubMed  Google Scholar 

  16. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411:355–65.

    CAS  PubMed  Google Scholar 

  17. Hubbard SR, Miller WT. Receptor tyrosine kinases: mechanisms of activation and signaling. Curr Opin Cell Biol. 2007;19:117–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. De Meyts P. The insulin receptor: a prototype for dimeric, allosteric membrane receptors? Trends Biochem Sci. 2008;33:376–84.

    PubMed  Google Scholar 

  19. De Meyts P, Gauguin L, Svendsen AM, Sarhan M, Knudsen L, Nøhr J, Kiselyov VV. Structural basis of allosteric interactions in the insulin/relaxin peptide family. Implications for other receptor tyrosine kinases and G protein-coupled receptors. Ann NY Acad Sci. 2009;1160:45–53.

    PubMed  Google Scholar 

  20. Lemmon MA, Schlessinger J. Cell signalling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harb Perspect Biol 2014; 6(3). pii: a008912, doi:10.1101/cshperspect.a008912.

  22. Hunter T. The genesis of tyrosine phosphorylation. Cold Spring Harb Perspect Biol 2014; 6(5):a020644, doi:10.1101/cshperspecta620644.

  23. Lemmon MA, Schlessinger J and Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 2014; 6(4):a020768, doi:10.1101/cshperspecta020768.

  24. Honegger AM, Kris RM, Ullrich A, Schlessinger J. Evidence that autophosphorylation of solubilized receptors for epidermal growth factor is mediated by intermolecular cross-phosphorylation. Proc Natl Acad Sci. 1989;86:925–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. de Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992;255:306–12.

    PubMed  Google Scholar 

  26. Wiesmann C, Ultsch MH, Bass CH, de Vos AM. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature. 1999;401:184–8.

    CAS  PubMed  Google Scholar 

  27. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J. Structural basis for the activation of the receptor tyrosine kinase KIT by stem cell factor. Cell. 2007;130:323–34.

    CAS  PubMed  Google Scholar 

  28. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirozou M, Yokoyama S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110:770–87.

    Google Scholar 

  29. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen CG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta(2)-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Monod J, Wyman J, Changeux JP. On the structure of allosteric transitions. a plausible model. J Mol Biol. 1965;12:88–118.

    CAS  PubMed  Google Scholar 

  31. Koshland DE, Nemethy G, Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966;5:365–85.

    CAS  PubMed  Google Scholar 

  32. Levitzki A, Koshland DE. Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci. 1969;62:1121–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Schlessinger J, Levitzki A. Molecular basis for negative cooperativity in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1974;82:547–61.

    CAS  PubMed  Google Scholar 

  34. De Meyts P, Roth J, Neville Jr DM, Gavin 3rd JR, Lesniak MA. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973;55:154–61.

    PubMed  Google Scholar 

  35. Christoffersen CT, Bornfeldt KE, Rotella CM, Gonzales N, Vissing H, Shymko RM, ten Hoeve J, Groffen J, Heisterkamp N, De Meyts P. Negative cooperativity in the insulin-like growth factor-I (IGF-I) receptor and a chimeric IGF-I/insulin receptor. Endocrinology. 1994;135:472–5.

    CAS  PubMed  Google Scholar 

  36. Frazier WA, Boyd LF, Pulliam MW, Szutowski A, Bradshaw RA. Properties and specificity of binding sites for 125-I nerve growth factor in embryonic heart and brain. J Biol Chem. 1974;249:5918–23.

    CAS  PubMed  Google Scholar 

  37. Zampieri N, Chao MV. The p75 NGF receptor exposed. Science. 2004;304:833–4.

    CAS  PubMed  Google Scholar 

  38. Cuatrecasas P, Hollenberg MD. Binding of insulin and other hormones to non-receptor materials: saturability, specificity and apparent “negative cooperativity”. Biochem Biophys Res Commun. 1975;62:31–41.

    CAS  PubMed  Google Scholar 

  39. Rao CV, Carman FR, Chegini N, Schultz GS. Binding sites for epidermal growth factor in human fetal membranes. J Clin Endo Metab. 1984;58:1034–42.

    CAS  Google Scholar 

  40. Prahl M, Nederman T, Carlsson J, Sjödin L. Binding of epidermal growth factor (EGF) to a cultured human glioma cell line. J Recept Res. 1991;11:791–812.

    CAS  PubMed  Google Scholar 

  41. De Meyts P. Cooperative properties of hormone receptors in cell membranes. J Supramol Struct. 1976;4:241–58.

    PubMed  Google Scholar 

  42. Macdonald JL, Pike LJ. Heterogeneity in EGF-binding affinities arise from negative cooperativity in an aggregating system. Proc Natl Acad Sci U S A. 2008;105:112–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Wofsy C, Goldstein B, Lund K, Wiley HS. Implications of epidermal growth factor (EGF) induced EGF receptor aggregation. Biophys J. 1992;63:98–110.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. De Meyts P. The structural basis of insulin and insulin-like growth factor-I (IGF-I) receptor binding and negative cooperativity, and its relevance to mitogenic versus metabolic signaling. Diabetologia. 1994;37 suppl 2:S135–48.

    PubMed  Google Scholar 

  45. Alvarado D, Klein DE, Lemmon MA. Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell. 2010;142:568–79.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Leahy DJ. The ins and outs of EGFR asymmetry. Cell. 2010;142:513–5.

    CAS  PubMed  Google Scholar 

  47. Limbird L, De Meyts P, Lefkowitz RJ. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem Biophys Res Commun. 1975;64:1160–8.

    CAS  PubMed  Google Scholar 

  48. Urizar E, Montanelli L, Loy T, Bonomi M, Swillens S, Gales C, Bouvier M, Smits G, Vassart G, Costagliola S. Glycoprotein hormone receptors: link between receptor homodimerization and negative cooperativity. EMBO J. 2005;24:1954–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Christopoulos A, Kenakin T. G protein-coupled receptor allosterism and complexing. Pharmacol Rev. 2002;54:323–74.

    CAS  PubMed  Google Scholar 

  50. Springael JY, Urizar E, Costagliola S, Vassart G, Parmentier M. Allosteric properties of G protein-coupled oligomers. Pharmacol Ther. 2007;115:410–8.

    CAS  PubMed  Google Scholar 

  51. Svendsen AM, Vrecl M, Knudsen L, Heding A, Wade JD, Bathgate RA, De Meyts P, Nøhr J. Dimerization and negative cooperativity in the relaxin family peptide receptors. Ann NY Acad Sci. 2009;1160:54–9.

    CAS  PubMed  Google Scholar 

  52. Roed SN, Orgaard A, Jorgensen R, De Meyts P. Receptor oligomerization in family B1 of G protein-coupled receptors: focus on BRET investigations and the link between GPCR oligomerization and binding cooperativity. Front Endocrin. 2012;3:62. doi:10.3389/fendo.2012.00062. eCollection.

    Google Scholar 

  53. Zoenen M, Urizar E, Swillens S, Vassart G, Costagliola S. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptors homomers. Nat Commun. 2012;3:1007. doi:10.1038/ncomms.

    PubMed  Google Scholar 

  54. Kiselyov VV, Versteyhe S, Gauguin L, De Meyts P. Harmonic oscillator model of the insulin and IGF1 receptors’ allosteric binding and activation. Mol Sys Biol. 2009;5:243. doi:10.1038/msb.208.78.

    Google Scholar 

  55. Ward CW, Lawrence MC, Streltsov VA, Adams TE, McKern NM. The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Trends Biochem Sci. 2007;32:129–37.

    CAS  PubMed  Google Scholar 

  56. Ward CW, Menting JG, Lawrence MC. The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. Bioessays. 2013;35:945–54.

    CAS  PubMed  Google Scholar 

  57. Huse M, Kuriyan J. The conformational plasticity of protein kinases. Cell. 2002;109:275–82.

    CAS  PubMed  Google Scholar 

  58. Ablooglu AJ, Kohanski RA. Activation of the insulin receptor kinase domain changes the rate-determining step of substrate phosphorylation. Biochemistry. 2001;40:504–13.

    CAS  PubMed  Google Scholar 

  59. Cobb MH, Sang BC, Gonzales R, Golsmith E, Ellis L. Autophosphorylation activates the soluble cytoplasmic domain of the insulin receptor in an intermolecular reaction. J Biol Chem. 1989;264:18701–6.

    CAS  PubMed  Google Scholar 

  60. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125:1137–49.

    CAS  PubMed  Google Scholar 

  61. Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, Ibáñez CF, McDonald NQ. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem. 2006;281:33577–87.

    CAS  PubMed  Google Scholar 

  62. Schlessinger J, Lemmon MA. SH2 and PTB domains in tyrosine kinase signaling. Sci STKE. 2003;191:RE12.

    Google Scholar 

  63. Pawson T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell. 2004;116:191–203.

    CAS  PubMed  Google Scholar 

  64. Avruch J. MAP kinase pathways: the first twenty years. Biochem Biophys Acta. 2007;1773:1150–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    CAS  PubMed  Google Scholar 

  66. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation and transformation. Cell. 2004;117:421–6.

    CAS  PubMed  Google Scholar 

  67. Essaghir A, Dif N, Marbehant CY, Coffer PJ, Demoulin JB. The transcription of FoxO genes is stimulated by FoxO3 and repressed by growth factors. J Biol Chem. 2009;284:10334–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Taniguchi CM, Emmanuelli B, Kahn CR. Critical nodes in signaling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.

    CAS  PubMed  Google Scholar 

  69. Taguchi A, White MF. Insulin-like signaling, nutrient homeostasis and lifespan. Ann Rev Physiol. 2008;70:191–212.

    CAS  Google Scholar 

  70. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.

    PubMed  Google Scholar 

  71. Oda K, Matsuoka Y, Fumahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Sys Biol. 2005;1:2005.0010.

    Google Scholar 

  72. Siddle K. Molecular basis of signalling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrin. 2012;3:34. doi:10.3389/fendo.2012.00034.

    Google Scholar 

  73. Efstratiadis A. Genetics of mouse growth. Int J Dev Biol. 1998;42:955–76.

    CAS  PubMed  Google Scholar 

  74. Lamothe B, Baudry A, Christoffersen CT, De Meyts P, Jami J, Bucchini D, Joshi RL. Insulin receptor-deficient cells as a new tool for dissecting complex interplay in insulin and insulin-like growth factors. FEBS Lett. 1998;426:381–5.

    CAS  PubMed  Google Scholar 

  75. Ish-Shalom D, Christoffersen CT, Vorwerk P, Sacerdotti-Sierra N, Shymko RM, De Meyts P. Mitogenic properties of insulin and insulin analogues mediated by the insulin receptor. Diabetologia. 1997;40:S25–31.

    CAS  PubMed  Google Scholar 

  76. De Meyts P. Insulin and insulin-like growth factors: the paradox of signaling specificity. Growth Horm IGF Res. 2002;12:81–3.

    PubMed  Google Scholar 

  77. Kim JJ, Accili D. Signaling through IGF-I and insulin receptors: where is the specificity? Growth Horm IGF Res. 2002;12:84–90.

    CAS  PubMed  Google Scholar 

  78. Versteyhe S, Klaproth B, Borup R, Palsgaard J, Jensen M, Gray SG, De Meyts P. IGF-I, IGF-II and insulin stimulate different gene expression responses through binding to the IGF-I receptor. Front Endocrin. 2013;4:98. doi:10.3389/fendo.2013.00098. eCollection.

    Google Scholar 

  79. Dittmer F, Ulbrich EJ, Hafner A, Schmahl W, Meister T, Pohlmann R, Von Figura K. Alternative mechanisms for trafficking of lysosomal enzymes in mannose-6-phosphate receptor-deficient mice are cell-type specific. J Cell Sci. 1999;112:1591–7.

    CAS  PubMed  Google Scholar 

  80. De Meyts P, Christoffersen CT, Ursø B, Wallach B, Grønskov K, Yakushiji F, Shymko RM. Role of the time factor in signaling specificity: application to mitogenic and metabolic signaling by the insulin and insulin-like growth factor-I receptor tyrosine kinases. Metabolism. 1995;44(10 suppl 4):2–11.

    PubMed  Google Scholar 

  81. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80:179–85.

    CAS  PubMed  Google Scholar 

  82. Santos SD, Verveer PJ, Bastiaens PJ. Growth factor-induced MAPK network topology shapes ERK response determining PC-12 cell fate. Nat Cell Biol. 2007;9:324–30.

    CAS  PubMed  Google Scholar 

  83. Schoeberl B, Eichler-Johnsson C, Gilles ED, Mueller G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol. 2002;20:370–1.

    PubMed  Google Scholar 

  84. Kitano H. Biological robustness. Nat Rev Genet. 2004;5:826–37.

    CAS  PubMed  Google Scholar 

  85. Kholodenko BN. Cell signaling dynamics in time and space. Nat Rev Mol Cell Biol. 2006;17:165–76.

    Google Scholar 

  86. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7:505–16.

    CAS  PubMed  Google Scholar 

  87. Borisov NM, Markevich NI, Hoek JB, Kholodenko BN. Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys J. 2005;89:951–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Shymko RM, Dumont E, De Meyts P, Dumont J. Timing dependence of insulin-receptor mitogenic versus metabolic signaling: a plausible model based on coincidence of hormone and effector binding. Biochem J. 1999;339:675–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. McGowan CH. Regulation of the eukaryotic cell cycle. Progr Cell Cycle Res. 2003;5:1–4.

    Google Scholar 

  90. Morgan DO. Cyclin-dependent kinases: enzymes, clocks and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–91.

    CAS  PubMed  Google Scholar 

  91. Olashaw N, Bagui TK, Pledger WJ. Cell cycle control. A complex issue. Cell Cycle. 2004;3:263–4.

    CAS  PubMed  Google Scholar 

  92. Coudreuse D, Nurse P. Driving the cell cycle with a minimal CDK control network. Nature. 2010;468:1075–9.

    Google Scholar 

  93. Dupont J, Pierre A, Froment P, Moreau C. The insulin-like growth factor axis in cell cycle progression. Horm Metab Res. 2003;35:740–50.

    CAS  PubMed  Google Scholar 

  94. Teng M-H, Bartholomew JC, Bissel MJ. Insulin effects on the cell cycle: analysis of the kinetics of growth parameters in confluent chick cells. Proc Natl Acad Sci U S A. 1976;73:3173–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk JJ, Pledger WJ. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979;76:1279–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. O’Keefe EJ, Pledger WJ. A model of cell cycle control: sequential events regulated by growth factors. Mol Cell Endocrinol. 1983;31:167–86.

    PubMed  Google Scholar 

  97. Olashaw NE, Van Wyk JJ, Pledger WJ. Control of late G0/G1 progression and protein modification by SmC/IGF-I. Am J Physiol. 1987;253:C575–9.

    CAS  PubMed  Google Scholar 

  98. Jensen M, Palsgaard J, Borup R, De Meyts P, Schäffer L. Activation of the insulin receptor (IR) by insulin and a synthetic peptide has different effects on gene expression in IR-transfected L6 myoblasts. Biochem J. 2008;412:435–45.

    CAS  PubMed  Google Scholar 

  99. Svendsen AM, Winge SB, Zimmermann M, Lindvig AB, Warzecha CB, Sajid W, Horne MC, De Meyts P. Down-regulation of cyclin G2 by insulin, IGF-I (insulin like growt factor-I), and X10 (AspB10 insulin): role in mitogenesis. Biochem J. 2014;457:69–77.

    CAS  PubMed  Google Scholar 

  100. Horne MC, Goolsby GL, Donaldson KL, Tran D, Neubauer M, Wahl AF. Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell-cycle regulated expression. J Biol Chem. 1996;271:6050–61.

    CAS  PubMed  Google Scholar 

  101. Horne MC, Donaldson KL, Goolsby GL, Tran D, Mulhelsen M, Hell JW, Wahl AF. Cyclin G2 is upregulated during growth inhibition and B cell antigen receptor-mediated cell cycle arrest. J Biol Chem. 1997;272:12650–61.

    CAS  PubMed  Google Scholar 

  102. Bennin DA, Don AS, Brake T, Mckenzie JL, Rosenbaum H, Ortiz L, DePaoli-Roach AA, Horne MC. Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B subunits in active complexes and induces nuclear aberrations and a G1/S cell cycle arrest. J Biol Chem. 2002;277:27449–67.

    CAS  PubMed  Google Scholar 

  103. Le XF, Arachchige-Don AS, Mao W, Horne MC, Bast Jr RC. Roles of human epidermal growth factor receptor 2, c-jun NH2-terminal kinase, phosphoinositide 3-kinase and p70S6 kinase in regulation of cyclin G2 expression in human breast cancer cells. Mol Cancer Ther. 2007;6:2843–57.

    CAS  PubMed  Google Scholar 

  104. Jones SM, Kazlaukas A. Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol. 2001;3:165–72.

    CAS  PubMed  Google Scholar 

  105. Zwang Y, Sas-Chen A, Drier Y, Shay T, Avraham R, Lauriola M, Shema E, Lidor-Nili E, Jacob-Hirsch J, Amariglio N, Lu Y, Mills GB, Rechavi G, Oren M, Domany E, Yarden Y. Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals. Mol Cell. 2011;42:524–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Jensen M, De Meyts P. Molecular mechanisms of differential signaling from the insulin receptor. Vitam Horm. 2009;80:51–75.

    CAS  PubMed  Google Scholar 

  107. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Cory S, Adam JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    CAS  PubMed  Google Scholar 

  110. Martinvalet D, Zhu P, Lieberman J. Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity. 2005;22:355–70.

    CAS  PubMed  Google Scholar 

  111. Párrizas M, Saltiel AR, LeRoith D. Insulin-like growth factor-I inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem. 1997;272:154–61.

    PubMed  Google Scholar 

  112. Kooijman R. Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cyt Growth Fact Rev. 2006;17:305–23.

    CAS  Google Scholar 

  113. Boucher J, Marcotella Y, Bezy O, Mori MA, Kriauciunas K, Kahn CR. A kinase-independent role for unoccupied insulin and IGF-I receptors in the control of apoptosis. Sci Signal. 2010;3(151):ra87. doi:10.1126/scisignal.2001173.

    CAS  PubMed  Google Scholar 

  114. Tseng YH, Ueki K, Kriauciunas KM, Kahn CR. Differential roles of insulin receptor substrates in the anti-apoptotic function of insulin-like growth factor-1 and insulin. J Biol Chem. 2002;277:31601–11.

    CAS  PubMed  Google Scholar 

  115. Diaz B, Pimentel B, De Pablo F, De La Rosa EJ. Apoptotic cell death of proliferating neuroepithelial cells in the embryonic retina is prevented by insulin. Eur J Neurosci. 1999;11:1624–32.

    CAS  PubMed  Google Scholar 

  116. Bertrand E, Atti A, Cadoret A, L’Allemain G, Robin H, Lascols O, et al. A role for nuclear factor Kappa B in the antiapoptotic function of insulin. J Biol Chem. 1998;273:2931–8.

    CAS  PubMed  Google Scholar 

  117. Lee-Kwon W, Park D, Baskar PV, Kole S, Bernier M. Antiapoptotic signalling by the insulin receptor in Chinese hamster ovary cells. Biochemistry. 1998;37:15747–57.

    CAS  PubMed  Google Scholar 

  118. Rampalli AM, Zelinka PS. Insulin regulates expression of C-fos and c-jun and suppresses apoptosis of lens epithelial cells. Cell Growth Diff. 1995;6:945–53.

    CAS  PubMed  Google Scholar 

  119. Kang S, Song J, Kang H, Kim S, Lee Y, Park D. Insulin can block apoptosis by decreasing oxidative stress via phosphatidylinositol 3-kinase and extracellular signal-regulated protein kinase-dependent signalling pathways in HepG2 cells. Eur J Endocrinol. 2003;148:147–55.

    CAS  PubMed  Google Scholar 

  120. Tanaka M, Sawada M, Yoshida S, Hanaoka F, Manurouchi T. Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures. Neurosci Lett. 1995;199:37–40.

    CAS  PubMed  Google Scholar 

  121. Johnson JD, Bernal-Mizzachi E, Alejandro EU, Han Z, Kalynyak TB, Li H, Beith JL, Gross J, Warnock GL, Townsend RR, Permutt MA, Polonski KS. Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proc Natl Acad Sci U S A. 2006;103:19575–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Iida KT, Suzuki H, Sone H, Shimano H, Toyoshima H, Yatoh S, Asano T, Okuda Y, Yamada N. Insulin inhibits apoptosis of macrophage cell line, THP-1 cells, via phsphatidylinositol 3-kinase-dependent pathway. Artherioscler Thromb Vasc Biol. 2002;22:380–6.

    CAS  Google Scholar 

  123. Corcelle EA, Puustinen P, Jäättelä M. Apoptosis and autophagy: targeting autophagy signalling in cancer cells – “trick or treats”? FEBS J. 2009;276:6084–96.

    CAS  PubMed  Google Scholar 

  124. Troncoso R, Vicenzio JM, Parra V, Nemchenko A, Kawashima Y, Del Campo A, Toro B, Battiprolu PK, Aranquiz P, Chiong M, Yakar S, Gillette TG, Hill JA, Abel ED, LeRoith D, Levandero S. Energy-preserving effects of IGF-I antagonize starvation-induced cardiac autophagy. Cardiovasc Res. 2012;93:320–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Danielsen AJ, Mailhe NJ. The EGF/ErbB receptor family and apoptosis. Growth Factors. 2002;20:1–15.

    CAS  PubMed  Google Scholar 

  126. Maruyama IN. Mechanisms of activation of receptor tyrosine kinases: monomers or dimers. Cells. 2014;3:304-30. doi:10.3390/cells3020304.

    Google Scholar 

Download references

Acknowledgements

I would like to acknowledge many enlightening discussions on RTKs over many years with Yossi Schlessinger, Yossi Yarden, Axel Ullrich, Ralph Bradshaw, Boris Kholodenko, Steve Wiley, Colin Ward and Mike Lawrence, as well as the many friends and colleagues who participated in the 37th European Symposium on Hormones and Cell Regulation on “RTKs from structural biology to systems biology” that I organised in Mont Sainte-Odile in October 2012.

Note I discovered after completion of this chapter an excellent review by Ichiro N. Maruyama [126] that discusses several issues also discussed in my chapter, and contains many additional references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre De Meyts M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Meyts, P. (2015). Receptor Tyrosine Kinase Signal Transduction and the Molecular Basis of Signalling Specificity. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_4

Download citation

Publish with us

Policies and ethics