Skip to main content

The Eukaryotic Protein Kinase Superfamily and the Emergence of Receptor Tyrosine Kinases

  • Chapter
  • First Online:
Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease

Abstract

The presence of tightly bound phosphate in proteins was discovered in 1883 and covalent attachment of phosphate to proteins in 1906, but this important posttranslational modification had been “invented” by evolution billion years before this in early prokaryotes. Tyrosine phosphorylation, as distinct from serine and threonine phosphorylation, was discovered in 1979 but appears to have arisen in single-celled eukaryotes that were the antecedents of the first multicellular animals. Sophisticated cell-cell communication was a sine qua non for the emergence of multicellular organisms, and the development of cell surface receptor systems that utilize tyrosine phosphorylation for transmembrane signal transduction and intracellular signaling seems likely to have been a crucial event in the evolution of metazoans. Like all types of protein phosphorylation, tyrosine phosphorylation can regulate proteins in multiple ways, but the most important function of phosphotyrosine (P.Tyr) is to serve as a docking site that promotes a specific interaction between a tyrosine-phosphorylated protein and another protein that contains a P.Tyr-binding domain, such as an SH2 domain. Once a surface receptor tyrosine kinase (RTK) is activated and becomes autophosphorylated upon binding an extracellular ligand, P.Tyr docking interactions of this sort initiate signal transduction through cytoplasmic signaling pathways and, as a consequence, elicit specific cellular outcomes. This chapter reviews the emergence of the protein kinase family in eukaryotes and how tyrosine kinases and, in particular, receptor tyrosine kinases that could be activated upon binding of an extracellular ligand evolved to serve key roles in transmembrane signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer EH, Krebs EG. Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem. 1955;216:121–32.

    CAS  PubMed  Google Scholar 

  2. Burnett G, Kennedy EP. The enzymatic phosphorylation of proteins. J Biol Chem. 1954;211:969–80.

    CAS  PubMed  Google Scholar 

  3. Shoji S, Parmelee DC, Wade RD, Kumar S, Ericsson LH, Walsh KA, et al. Complete amino acid sequence of the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1981;78:848–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Barker WC, Dayhoff MO. Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1982;79:2836–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980;77:1311–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hunter T. A thousand and one protein kinases. Cell. 1987;50:823–9.

    Article  CAS  PubMed  Google Scholar 

  7. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.

    Article  CAS  PubMed  Google Scholar 

  8. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010;143:1174–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. Structural and functional diversity of the microbial kinome. PLoS Biol. 2007;5:e17.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Srivastava S, Li Z, Ko K, Choudhury P, Albaqumi M, Johnson AK, et al. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell. 2006;24:665–75.

    Article  CAS  PubMed  Google Scholar 

  11. Grangeasse C, Nessler S, Mijakovic I. Bacterial tyrosine kinases: evolution, biological function and structural insights. Phil Trans Roy Soc B. 2012;367:2640–55.

    Article  CAS  Google Scholar 

  12. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241:42–52.

    Article  CAS  PubMed  Google Scholar 

  13. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995;9:576–96.

    CAS  PubMed  Google Scholar 

  14. Hunter T, Plowman GD. The protein kinases of budding yeast: six score and more. Trends Biochem Sci. 1997;22:18–22.

    Article  CAS  PubMed  Google Scholar 

  15. Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci. 2002;27:514–20.

    Article  CAS  PubMed  Google Scholar 

  16. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  CAS  PubMed  Google Scholar 

  17. Plowman GD, Sudarsanam S, Bingham J, Whyte D, Hunter T. The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci U S A. 1999;96:13603–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, Coffman JA, et al. The sea urchin kinome: a first look. Dev Biol. 2006;300:180–93.

    Article  CAS  PubMed  Google Scholar 

  19. Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci U S A. 2004;101:11707–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 2006;4:e286.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, Xu Y, et al. The dictyostelium kinome – analysis of the protein kinases from a simple model organism. PLoS Genet. 2006;2:e38.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Manning G, Reiner D, Lauwaet T, Dacre M, Smith A, Zhai Y, et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 2011;12:R66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Forrest AR, Taylor DF, Crowe ML, Chalk AM, Waddell NJ, Kolle G, et al. Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biol. 2006;7:R5.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Talevich E, Tobin AB, Kannan N, Doerig C. An evolutionary perspective on the kinome of malaria parasites. Phil Trans Roy Soc B. 2012;367:2607–18.

    Article  CAS  Google Scholar 

  26. Lehti-Shiu MD, Shiu SH. Diversity, classification and function of the plant protein kinase superfamily. Phil Trans Roy Soc B. 2012;367:2619–39.

    Article  CAS  Google Scholar 

  27. Legler A, Manning G. in preparation [unpublished].

    Google Scholar 

  28. Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336:1150–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ishikawa HO, Xu A, Ogura E, Manning G, Irvine KD. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One. 2012;7:e42988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Xiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature. 2009;457:57–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Gao X, Wang H, Yang JJ, Liu X, Liu ZR. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell. 2012;45:598–609.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 2012;150:685–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR. Emerging roles of pseudokinases. Trends Cell Biol. 2006;16:443–52.

    Article  CAS  PubMed  Google Scholar 

  34. Zeqiraj E, van Aalten DM. Pseudokinases-remnants of evolution or key allosteric regulators? Curr Opin Struct Biol. 2010;20:772–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Sudhof TC, et al. CASK Functions as a Mg2+-independent neurexin kinase. Cell. 2008;133:328–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A. 2010;107:7692–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Brennan DF, Dar AC, Hertz NT, Chao WC, Burlingame AL, Shokat KM, et al. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK. Nature. 2011;472:366–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol. 2011;18:971–6.

    Article  CAS  PubMed  Google Scholar 

  39. Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science. 2009;326:1707–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Scheeff ED, Eswaran J, Bunkoczi G, Knapp S, Manning G. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure. 2009;17:128–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Fukuda K, Gupta S, Chen K, Wu C, Qin J. The pseudoactive site of ILK is essential for its binding to alpha-parvin and localization to focal adhesions. Mol Cell. 2009;36:819–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Maydan M, McDonald PC, Sanghera J, Yan J, Rallis C, Pinchin S, et al. Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3beta (GSK-3beta) phosphorylation. PLoS One. 2010;5:e12356.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Manning G. Protein kinases in human disease. 2005-06 Catalog and technical reference. Beverly, MA: Cell Signaling Technologies; 2005. p. 402–9.

    Google Scholar 

  44. Torkamani A, Schork NJ. Prediction of cancer driver mutations in protein kinases. Cancer Res. 2008;68:1675–82.

    Article  CAS  PubMed  Google Scholar 

  45. Delfino FJ, Stevenson H, Smithgall TE. A growth-suppressive function for the c-fes protein-tyrosine kinase in colorectal cancer. J Biol Chem. 2006;281:8829–35.

    Article  CAS  PubMed  Google Scholar 

  46. Lisabeth EM, Fernandez C, Pasquale EB. Cancer somatic mutations disrupt functions of the EphA3 receptor tyrosine kinase through multiple mechanisms. Biochemistry. 2012;51:1464–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Brognard J, Zhang YW, Puto LA, Hunter T. Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Cancer Res. 2011;71:3152–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815.

    Article  Google Scholar 

  49. Bemm F, Schwarz R, Forster F, Schultz J. A kinome of 2600 in the ciliate Paramecium tetraurelia. FEBS Lett. 2009;583:3589–92.

    Article  CAS  PubMed  Google Scholar 

  50. Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Phil Trans Roy Soc B. 2012;367:2556–73.

    Article  CAS  Google Scholar 

  51. Manning G, Scheeff E. How the vertebrates were made: selective pruning of a double-duplicated genome. BMC Biol. 2010;8:144.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Miller WT. Tyrosine kinase signaling and the emergence of multicellularity. Biochim Biophys Acta. 1823;2012:1053–7.

    Google Scholar 

  53. Manning G, Young SL, Miller WT, Zhai Y. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A. 2008;105:9674–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal. 2012;5:ra35.

    Article  PubMed  Google Scholar 

  55. Kramer E, Manning G. unpublished.

    Google Scholar 

  56. Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N. Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/beta-catenin complex. Proc Natl Acad Sci U S A. 2012;109:13046–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lim WA, Pawson T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell. 2010;142:661–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Lawler S, Feng XH, Chen RH, Maruoka EM, Turck CW, Griswold-Prenner I, et al. The type II transforming growth factor-beta receptor autophosphorylates not only on serine and threonine but also on tyrosine residues. J Biol Chem. 1997;272:14850–9.

    Article  CAS  PubMed  Google Scholar 

  59. Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci U S A. 2009;106:658–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tice DA, Biscardi JS, Nickles AL, Parsons SJ. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A. 1999;96:1415–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hunter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hunter, T., Manning, G. (2015). The Eukaryotic Protein Kinase Superfamily and the Emergence of Receptor Tyrosine Kinases. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Structure, Functions and Role in Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2053-2_1

Download citation

Publish with us

Policies and ethics