Skip to main content

Considerations in Organ Failure

  • Chapter
  • First Online:
Surgical Metabolism
  • 1414 Accesses

Abstract

Recent advances about multiple-organ failure have highlighted several aspects of its diagnosis and management. However, broad areas remain undiscovered. The classic differentiation into two hits has been challenged with the discovery of mixed gene responses and prolonged clinical outcomes, leading to a new proposed concept, the persistent inflammation-immunosuppression catabolism syndrome (PICS). The incidence ranges between 15 and 40 % and associated mortality is six- to eightfold higher than patients without organ dysfunction. Current scoring systems are valid but are not useful for prognosis, as all of them lack specificity and sensibility for selected populations. Single organ dysfunction criteria has been revisited and revised: Berlin ARDS criteria, AKIN classification, and gastrointestinal failure. Physiopathology research has specially focused on gene involvement, neural regulation, and mitochondrial damage as future targets for innovative therapies. A search for early biomarkers is underway with limited results, and traditional nutritional support guidelines have been challenged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal S, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.

    CAS  PubMed  Google Scholar 

  2. Eiseman B, Beart R, Norton L. Multiple organ failure. Surg Gynecol Obstet. 1977;144:323–6.

    CAS  PubMed  Google Scholar 

  3. Singer M, De Santis V, Vitale D, Jeffcoate W. Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet. 2004;364(9433): 545–8.

    PubMed  Google Scholar 

  4. Moore FA, Sauaia A, Moore EE, Haenel JB, Burch JM, Lezotte DC. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma. 1996;40:501–10.

    CAS  PubMed  Google Scholar 

  5. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The “undrained abscess” of multiple organ failure. Ann Surg. 1993;218(2):111–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Minei JP, Cuschieri J, Sperry J, Moore EE, West MA, Harbrecht BG, et al. The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. Crit Care Med. 2012;40(4):1129–35.

    PubMed Central  PubMed  Google Scholar 

  7. Brattstrom O, Granath F, Rossi P, Oldner A. Early predictors of morbidity and mortality in trauma patients treated in the intensive care unit. Acta Anaesthesiol Scand. 2010;54:1007–17.

    CAS  PubMed  Google Scholar 

  8. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93.

    CAS  PubMed  Google Scholar 

  9. Dewar DC, Tarrant SM, King KL, Balogh ZJ. Changes in the epidemiology and prediction of multiple-organ failure after injury. J Trauma Acute Care Surg. 2013;74(3):774–9.

    PubMed  Google Scholar 

  10. Ciesla DJ, Moore EE, Johnson JL, Burch JM, Cothren CC, Sauaia A. A 12-year prospective study of postinjury multiple organ failure: has anything changed? Arch Surg. 2005;140(5):432–8.

    PubMed  Google Scholar 

  11. Kallinen O, Maisniemi K, Böhling T, Tukiainen E, Koljonen V. Multiple organ failure as a cause of death in patients with severe burns. J Burn Care Res. 2012;33(2):206–11.

    PubMed  Google Scholar 

  12. Cabré L, Mancebo J, Solsona JF, Saura P, Gich I, Blanch L, et al. Multicenter study of the multiple organ dysfunction syndrome in intensive care units: the usefulness of Sequential Organ Failure Assessment scores in decision making. Intensive Care Med. 2005;31:927–33.

    PubMed  Google Scholar 

  13. Ulvik A, Kvale R, Wentzel-Larsen T, Flaatten H. Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care. 2007;11(5):1–8.

    Google Scholar 

  14. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. Prognosis in acute organ-system failure. Ann Surg. 1985;202(6):685–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Zimmerman JE, Knaus WA, Sun X, Wagner DP. Severity stratification and outcome prediction for multisystem organ failure and dysfunction. World J Surg. 1996;20(4):401–5.

    CAS  PubMed  Google Scholar 

  16. Hortigüela-Martín VA, Sanchez-Casado M, Rodríguez-Villar S, Quintana-Díaz M, Marco-Schulke C, Gómez-Tello V, et al. Post-Intensive Care Unit mortality and related prognostic factors in a cohort of critically ill patients with multi-organ dysfunction. Med Clin. 2013;140(11):479–86.

    Google Scholar 

  17. Lone NI, Walsh TS. Impact of intensive care unit organ failures on mortality during the five years after a critical illness. Am J Respir Crit Care Med. 2012;186(7):640–7.

    PubMed  Google Scholar 

  18. Le Gall JR, Klar J, Lemeshow S, Saulnier F, Alberti C, Artigas A, Teres D. ICU Scoring Group. The logistic organ dysfunction system: a new way to assess organ dysfunction in the intensive care unit. JAMA. 1996;276:802–10.

    PubMed  Google Scholar 

  19. Vincent JL, Moreno R, Takala J, Willatts S, de Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996;22:707–10.

    CAS  PubMed  Google Scholar 

  20. Cook R, Cook D, Tilley J, Lee KA, Marshall J. Multiple organ dysfunction: baseline and serial component scores. Crit Care Med. 2001;29(11): 2046–50.

    CAS  PubMed  Google Scholar 

  21. Giannoni C, Chelazzi C, Villa G, Raffaele De Gaudio A. Organ dysfunction scores in ICU. Trends Anaesth Crit Care. 2013;3(3):89–96.

    Google Scholar 

  22. Lorente JA, Vallejo A, Galeiras R, Tómicic V, Zamora J, Cerdá E, et al. Organ dysfunction as estimated by the sequential organ failure assessment score is related to outcome in critically ill burn patients. Shock. 2009;31(2):125–31.

    PubMed  Google Scholar 

  23. Vincent JL, De Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit Care Med. 1998;26(11): 1793–800.

    CAS  PubMed  Google Scholar 

  24. Sauaia A, Moore EE, Johnson JL, Ciesla DJ, Biffl WL, Banerjee A. Validation of postinjury multiple organ failure scores. Shock. 2009;31(5):438–47.

    PubMed  Google Scholar 

  25. Peres-Bota D, Melot C, Ferreira FL, Ba VN, Vincent JL. The multiple organ dysfunction score (MODS) versus the sequential organ failure assessment (SOFA) score in outcome prediction. Intensive Care Med. 2002;28(11):1619–24.

    PubMed  Google Scholar 

  26. Zygun D, Berthiaume L, Laupland K, Kortbeek J, Doig C. SOFA is superior to MOD score for the determination of non-neurologic organ dysfunction in patients with severe traumatic brain injury: a cohort study. Crit Care. 2006;10(4):R115.

    PubMed Central  PubMed  Google Scholar 

  27. Vincent JL, Moreno R. Scoring systems in the critically ill. Crit Care. 2010;14:207–15.

    PubMed Central  PubMed  Google Scholar 

  28. Hoste EAJ, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care. 2006;10(3):1–10.

    Google Scholar 

  29. Molitoris BA, Levin A, Warnock DG, Joannidis M, Mehta RL, Kellum JA, et al. Improving outcomes of acute kidney injury: report of an initiative. Nat Clin Pract Nephrol. 2007;3(8):439–42.

    PubMed  Google Scholar 

  30. Child CG. Surgery and portal hypertension. In: Child CG, editor. The liver and portal hypertension. Philadelphia, PA: WB Saunders; 1964. p. 50–72.

    Google Scholar 

  31. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60:646–9.

    CAS  PubMed  Google Scholar 

  32. ARDS Definition Task Force. Acute respiratory distress syndrome. JAMA. 2012;307(23):2526–33.

    Google Scholar 

  33. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10(12):826–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.

    CAS  PubMed  Google Scholar 

  35. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol. 2003;3(10):791–800.

    CAS  PubMed  Google Scholar 

  36. Gao L, Flores C, Fan-Ma S, Miller EJ, Moitra J, Moreno L, et al. Macrophage migration inhibitory factor in acute lung injury: expression, biomarker, and associations. Transl Res. 2007;150(1):18–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Donnelly SC, Bucala R, Metz CN, Grant IS, Robertson CR, Haslett C. Macrophage migration inhibitory factor and acute lung injury. Chest. 1999;116 Suppl 1:111S.

    CAS  PubMed  Google Scholar 

  38. Rittirsch D, Redl H, Huber-Lang M. Role of complement in multiorgan failure. Clin Dev Immunol. 2012;2012:962927.

    PubMed Central  PubMed  Google Scholar 

  39. Rittirsch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang M, Mackay CR, et al. Functional roles for C5a receptors in sepsis. Nat Med. 2008;14(5):551–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Silasi-Mansat R, Zhu H, Popescu NI, Peer G, Sfyroera G, Magotti P, et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood. 2010;116(6):1002–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron. 2009;64(1):28–32.

    CAS  PubMed  Google Scholar 

  42. Tracey KJ. Reflex control of immunity. Nature. 2002;420:853–9.

    CAS  PubMed  Google Scholar 

  43. Doerschug KC, Delsing AS, Schmidt GA, Haynes WG. Impairments in microvascular reactivity are related to organ failure in human sepsis. Am J Physiol Heart Circ Physiol. 2007;293(2):H1065–71.

    CAS  PubMed  Google Scholar 

  44. Shapiro NI, Yano K, Okada H, Fischer C, Howell M, Spokes KC, et al. A prospective, observational study of soluble FLT-1 and vascular endothelial growth factor in sepsis. Shock. 2008;29(4):452–7.

    CAS  PubMed  Google Scholar 

  45. Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM, Jones AE, et al. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care. 2010;14(5):R182.

    PubMed Central  PubMed  Google Scholar 

  46. David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, Wenger JB, et al. Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis. Crit Care Med. 2012;40(11):3034–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2001;32(9):1825–31.

    Google Scholar 

  48. Trzeciak S, McCoy JV, Dellinger RP, Arnold RC, Rizzuto M, Abate NL, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34(12):2210–7.

    PubMed Central  PubMed  Google Scholar 

  49. Trzeciak S, Cinel I, Dellinger RP, Shapiro NI, Arnold RC, Parrillo JE, et al. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med. 2008;15(5):399–413.

    PubMed Central  PubMed  Google Scholar 

  50. Singer M. Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med. 2007;35(9):S441–8.

    CAS  PubMed  Google Scholar 

  51. Singer M. Mechanisms of sepsis-induced organ dysfunction and recovery update in intensive care and emergency medicine. Crit Care Emerg Med. 2007;44:299–310.

    CAS  Google Scholar 

  52. Harrois A, Huet O, Duranteau J. Alterations of mitochondrial function in sepsis and critical illness. Curr Opin Anaesthesiol. 2009;22(2):143–9.

    PubMed  Google Scholar 

  53. Haden DW, Suliman HB, Carraway MS, Welty-Wolf KE, Al AS, Shitara H, et al. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med. 2007;176:768–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–23.

    CAS  PubMed  Google Scholar 

  55. Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Resp Crit Care Med. 2010;182(6):745–51.

    PubMed Central  PubMed  Google Scholar 

  56. Jeger V, Djafarzadeh S, Jakob SM, Takala J. Mitochondrial function in sepsis. Eur J Clin Invest. 2013;43(5):532–42.

    CAS  PubMed  Google Scholar 

  57. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Leavy O. Inflammation: trauma kicks up a storm. Nat Rev Immunol. 2011;12(1):3.

    PubMed  Google Scholar 

  59. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Ashbaugh D, Boyd BD, Petty T, Levine B. Acute respiratory distress in adults. Lancet. 1967; 290(7511):319–23.

    Google Scholar 

  61. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Nef M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–93.

    CAS  PubMed  Google Scholar 

  62. Abraham E, Matthay MA, Dinarello CA, Vincent JL, Cohen J, Opal SM, et al. Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med. 2000;28(1):232–5.

    CAS  PubMed  Google Scholar 

  63. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–82.

    PubMed  Google Scholar 

  64. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334–49.

    CAS  PubMed  Google Scholar 

  65. Tsushima K, King LS, Aggarwal NR, De Gorordo A, D’Alessio FR, Kubo K. Acute lung injury review. Intern Med. 2009;48:621–30.

    PubMed  Google Scholar 

  66. Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G, et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 2009;35:871–81.

    PubMed  Google Scholar 

  67. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, The Acute Dialysis Quality Initiative Workgroup. Acute renal failure definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative Group. Crit Care. 2004;8:R204–12.

    PubMed Central  PubMed  Google Scholar 

  68. Mehta RL, Kellum JA, Shah SV, The Acute Kidney Injury Network. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.

    PubMed Central  PubMed  Google Scholar 

  69. The Kidney Disease Improving Global Outcomes (KDIGO) Working Group. Definition and classification of acute kidney injury. Kidney Int. 2012; Suppl 2:19–36.

    Google Scholar 

  70. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380:756–66.

    PubMed  Google Scholar 

  71. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;54:1012–24.

    CAS  PubMed  Google Scholar 

  72. Srisawat N, Wen X, Lee M, Kong L, Elder M, Carter M, et al. Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol. 2011;6(8):1815–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Obermüller N, Geiger H, Weipert C, Urbschat A. Current developments in early diagnosis of acute kidney injury. Int Urol Nephrol. 2014;46(1):1–7. doi:10.1007/s11255-013-0448-5 [Epub ahead of print].

    PubMed  Google Scholar 

  74. Werdan K, Schmidt H, Ebelt H, Zorn-Pauly K, Koidl B, Hoke RS, et al. Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol. 2009;87(4):266–74.

    CAS  PubMed  Google Scholar 

  75. Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104(1):3–11.

    CAS  PubMed  Google Scholar 

  76. Matsuda N, Hattori Y. Vascular biology in sepsis: pathophysiological and therapeutic significance of vascular dysfunction. J Smooth Muscle Res. 2007; 43(4):117–37.

    PubMed  Google Scholar 

  77. Levy B, Collin S, Sennoun N, Ducrocq N, Kimmoun A, Asfar P, et al. Vascular hyporesponsiveness to vasopressors in septic shock: from bench to bedside. In: Pinsky MR, Brochard L, Mancebo J, Antonelli M, editors. Applied physiology in intensive care medicine 2. Berlin: Springer; 2012. p. 251–61.

    Google Scholar 

  78. Lamar CD, Hurley RA, Taber KH. Sepsis-associated encephalopathy: review of the neuropsychiatric manifestations and cognitive outcome. J Neuropsychiatry Clin Neurosci. 2011;23:237–41.

    PubMed  Google Scholar 

  79. Chelazzi C, Consales G, De Gaudio AR. Sepsis associated encephalopathy. Curr Anaesth Crit Care. 2008;19(1):15–21.

    Google Scholar 

  80. Garnacho-Montero J, Madrazo-Osuna J, García-Garmendia JL, Ortiz-Leyba C, Jiménez-Jiménez FJ, Barrero-Almodóvar A, et al. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27(8):1288–96.

    CAS  PubMed  Google Scholar 

  81. Garnacho-Montero J, Amaya-Villar R, García-Garmendía JL, Madrazo-Osuna J, Ortiz-Leyba C. Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med. 2005;33(2):349–54.

    PubMed  Google Scholar 

  82. Ortiz-Leyba C, Ortiz-Moyano C, Jiménez-Jiménez FJ, Garnacho-Montero J, García-Garmendia JL. Nutritional support in severe sepsis. Clin Pulm Med. 2003;10(1):26–33.

    Google Scholar 

  83. Gardiner K, Barbull A. Intestinal amino acid absorption during sepsis. JPEN. 1993;17:277–83.

    CAS  Google Scholar 

  84. Salloun RM, Copeland EM, Souba WW. Brush border transport of glutamine and other substrates during sepsis and endotoxemia. Ann Surg. 1991; 213:401–10.

    Google Scholar 

  85. Groeneveld ABJ. Gastrointestinal exocrine failure in critical illness. In: Rombeau JL, Takala J, editors. Gut dysfunction in critical illness, Update in intensive care and emergency medicine, vol. 26. Berlin: Springer; 1996. p. 297–306.

    Google Scholar 

  86. Heidegger CP, Berge MM, Graf S, Zingg W, Darmon P, Costanza MC, et al. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet. 2013;381(9864):385–93.

    PubMed  Google Scholar 

  87. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.

    CAS  PubMed  Google Scholar 

  88. Louis K, Netea MG, Carrer DP, Kotsaki A, Mylona V, Pistiki A, et al. Bacterial translocation in an experimental model of multiple organ dysfunctions. J Surg Res. 2013;183(2):686–94.

    CAS  PubMed  Google Scholar 

  89. Reintam A, Poeze M, Malbrain ML, Björck M, Oudemans-van Straaten HM, Starkopf J, Gastro-Intestinal Failure Trial Group. Gastrointestinal symptoms during the first week of intensive care are associated with poor outcome: a prospective multicentre study. Intensive Care Med. 2013;39(5):899–909.

    Google Scholar 

  90. Piton G, Manzon C, Cypriani B, Carbonnel F, Capellier G. Acute intestinal failure in critically ill patients: is plasma citrulline the right marker? Intensive Care Med. 2011;37(6):911–7.

    PubMed  Google Scholar 

  91. Malbrain ML, Cheatham ML, Kirkpatrick A, Sugrue M, Parr M, De Waele J, et al. Results from the international conference of experts on intra-abdominal hypertension and abdominal compartment syndrome. I. Definitions. Intensive Care Med. 2006; 32(11): 1722–32.

    PubMed  Google Scholar 

  92. Malbrain ML, De Laet I. AIDS is coming to your ICU: be prepared for acute bowel injury and acute intestinal distress syndrome. Intensive Care Med. 2008;34(9):1565–9.

    PubMed  Google Scholar 

  93. Reintam A, Parm P, Kitus R, Starkopf J, Kern H. Gastrointestinal failure score in critically ill patients: a prospective observational study. Crit Care. 2008;12:R90.

    PubMed Central  PubMed  Google Scholar 

  94. Reintam A, Malbrain ML, Starkopf J, Fruhwald S, Jakob SM, De Waele J, et al. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems. Intensive Care Med. 2012;38(3):384–94.

    Google Scholar 

  95. Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med. 2001;29:S42–7.

    CAS  PubMed  Google Scholar 

  96. Spapen H. Liver perfusion in sepsis, septic shock, and multiorgan failure. Anat Rec. 2008;291:714–20.

    Google Scholar 

  97. Olanders K, Sun Z, Borjesson A, Dib M, Andersson E, Lasson Å, et al. The effect of intestinal ischemia and reperfusion injury on ICAM-1 expression, endothelial barrier function, neutrophil tissue influx, and protease inhibitor levels in rats. Shock. 2002;18(1):86–92.

    PubMed  Google Scholar 

  98. Poeze M, Ramsay G, Buurman WA, Greve JWM, Dentener M, Takala J. Increased hepatosplanchnic inflammation precedes the development of organ dysfunction after elective high-risk surgery. Shock. 2002;17:451–8.

    PubMed  Google Scholar 

  99. Soeters PB, Luyer MS, Willem J, Greve M, Buurman WA. The significance of bowel permeability. Curr Opin Clin Nutr Metab Care. 2007;10:632–8.

    PubMed  Google Scholar 

  100. Kobayashi N, Maekawa T, Takada M, Tanaka H, Gonmori H. Criteria for diagnosis of DIC based on the analysis of clinical and laboratory findings in 345 DIC patients collected by the Research Committee on DIC in Japan. Bibl Haematol. 1987;49:848–52.

    Google Scholar 

  101. Taylor Jr FB, Toh CH, Hoots WK, Wada H, Levi M. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation: on behalf of the Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Thromb Haemost. 2001;86: 1327–30.

    CAS  PubMed  Google Scholar 

  102. Gando S, Iba T, Eguchi Y, Ohtomo Y, Okamoto K, Koseki K, et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients: comparing current criteria. Crit Care Med. 2006;34:625–31.

    PubMed  Google Scholar 

  103. Takemitsu T, Wada H, Hatada T, Ohmori Y, Ishikura K, Takeda T, et al. Prospective evaluation of three different diagnostic criteria for disseminated intravascular coagulation. Thromb Haemost. 2011;105: 40–4.

    CAS  PubMed  Google Scholar 

  104. Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, Kurosawa S, Stepien D, Valentine C, et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol Rev. 2013;93(3):1247–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Cuthbertson DP. Post-shock metabolic response. Lancet. 1942;239(6189):433–7.

    Google Scholar 

  106. Cerra FB. Hypermetabolism, organ failure, and metabolic support. Surgery. 1987;101:1–14.

    CAS  PubMed  Google Scholar 

  107. Van Den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    PubMed  Google Scholar 

  108. Frankenfield DC, Oniert LA, Badellino MM, Wiles CE, Bagley SM, Goodarzi S, et al. Correlation between measured energy expenditure and clinically obtained variables in trauma and sepsis patients. JPEN. 1994;18(5):398–403.

    CAS  Google Scholar 

  109. Dickerson RN. Optimal caloric intake for critically ill patients: first, do no harm. Nutr Clin Pract. 2011;26(1):48–54.

    PubMed  Google Scholar 

  110. Silvestri L, van Saene HK, Zandstra DF, Marshall JC, Gregori D, Gullo A. Impact of selective decontamination of the digestive tract on multiple organ dysfunction syndrome: systematic review of randomized controlled trials. Crit Care Med. 2010; 38(5):1370–6.

    PubMed  Google Scholar 

  111. Leal-Noval SR, Muñoz M, Asuero M, Contreras E, García-Erce JA, Llau JV, et al. Spanish Consensus Statement on alternatives to allogeneic blood transfusion: the 2013 update of the “Seville Document”. Blood Transfus. 2013;11(4):1–25.

    Google Scholar 

  112. Leal-Noval SR, Muñoz-Gómez M, Jiménez-Sánchez M, Cayuela A, Leal-Romero M, Puppo-Moreno A, et al. Red blood cell transfusion in non-bleeding critically ill patients with moderate anemia: is there a benefit? Intensive Care Med. 2013;39(3):445–53.

    PubMed  Google Scholar 

  113. Gunst J, Derese I, Aertgeerts A, Ververs EJ, Wauters A, Van den Berghe G, et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med. 2013;41(1):182–94.

    PubMed  Google Scholar 

  114. Levitt JE, Calfee CS, Goldstein BA, Vojnik R, Matthay MA. Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation. Crit Care Med. 2013;41(8): 1929–37.

    PubMed  Google Scholar 

  115. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.

    PubMed  Google Scholar 

  116. European Medicines Agency. Recommendation to suspend marketing authorisations for hydroxyethyl-starch solutions to be re-examined. 12 July 2013. EMA/349341/2013.

    Google Scholar 

  117. De Backer D, Aldecoa C, Hassane H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis. Crit Care Med. 2012;40(3):725–30.

    PubMed  Google Scholar 

  118. Home AJRCCM, Home AJRCMB, By Subject CME. Randomized, placebo-controlled clinical trial of an aerosolized β 2-agonist for treatment of acute lung injury. Am J Resp Crit Care Med. 2011;184(5): 561–8.

    Google Scholar 

  119. Jones NE, Heyland DK. Pharmaconutrition: a new emerging paradigm. Curr Opin Gastroenterol. 2008;24(2):215–22.

    CAS  PubMed  Google Scholar 

  120. Ortiz-Leyba C, Montejo-González JC, Vaquerizo-Alonso C, Metabolism and Nutrition Working Group of the Spanish Society of Intensive Care Medicine and Coronary Units. Guidelines for specialized nutritional and metabolic support in the critically-ill patient: update. Consensus SEMICYUC-SENPE: septic patient. Nutr Hosp. 2011;26 Suppl 2:67–71.

    PubMed  Google Scholar 

  121. Heyland DK, Novak F, Drover JW, Jain M, Suchner U. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 2001;286:944–53.

    CAS  PubMed  Google Scholar 

  122. Davis J, Anstey N. Is plasma arginine concentration decreased in patients with sepsis? A systematic review and meta-analysis. Crit Care Med. 2011; 39(2):380–5.

    CAS  PubMed  Google Scholar 

  123. Wernerman J, Kirketeig T, Andersson B, et al. Scandinavian glutamine trial: a pragmatic multi-centre randomised clinical trial of intensive care unit patients. Acta Anaesthesiol Scand. 2011;55:812–8.

    CAS  PubMed  Google Scholar 

  124. Andrews PJ, Avenell A, Noble DW, Campbell MK, Croal BL, Simpson WG, et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011;342:d1542.

    PubMed  Google Scholar 

  125. Grau T, Bonet A, Miñambres E, Piñeiro L, Irles JA, Robles A, et al.; for the Metabolism, Nutrition Working Group, SEMICYUC, Spain. The effect of l-alanyl-l-glutamine dipeptide supplemented total parenteral nutrition on infectious morbidity and insulin sensitivity in critically ill patients. Crit Care Med. 2011;39(6):1263–8.

    Google Scholar 

  126. Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368:1489–97.

    CAS  PubMed  Google Scholar 

  127. Bruegel M, Ludwig U, Kleinhempel A. Sepsis-associated changes of the arachidonic acid metabolism and their diagnostic potential in septic patients. Crit Care Med. 2012;40(5):1478–86.

    CAS  PubMed  Google Scholar 

  128. Umpierrez GE, Spiegelman R, Zhao V, Smiley DD, Pinzon I, Griffith DP, et al. A double-blind, randomized clinical trial comparing soybean oil–based versus olive oil–based lipid emulsions in adult medical–surgical intensive care unit patients requiring parenteral nutrition. Crit Care Med. 2012; 40:1792.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Mateu-de Antonio J, Grau S, Luque S, Marín-Casino M, Albert I, Ribes E. Comparative effects of olive oil-based and soyabean oil-based emulsions on infection rate and leucocyte count in critically ill patients receiving parenteral nutrition. Br J Nutr. 2008;99(4):846–54.

    CAS  PubMed  Google Scholar 

  130. Rice TW, Wheeler AP, Thompson BT, de Boisblanc BP, Steingrub J, Rock P, NIH NHLBI Acute Respiratory Distress Syndrome Network of Investigators. Enteral omega-3 fatty acid, γ-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Grau-Carmona T, Morán-García V, García-de-Lorenzo A, Heras-de-la-Calle G, Quesada-Bellver B, López-Martínez J, et al. Effect of an enteral diet enriched with eicosapentaenoic acid, gamma-linolenic acid and anti-oxidants on the outcome of mechanically ventilated, critically ill, septic patients. Clin Nutr. 2011;30(5):578–84.

    CAS  PubMed  Google Scholar 

  132. Wagner E, Frank MM. Therapeutic potential of complement modulation. Nat Rev Drug Discov. 2010;9:43–56.

    CAS  PubMed  Google Scholar 

  133. Ghannam S, Bouffi C, Djouad F, Jorgensen C, Noël D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res Ther. 2010;1:2.

    PubMed Central  PubMed  Google Scholar 

  134. Groeneveld KM, Leenen LP, Koenderman L, Kesecioglu J. Immunotherapy after trauma: timing is essential. Curr Opin Anaesthesiol. 2011;24(2): 219–23.

    PubMed  Google Scholar 

  135. Gotts JE, Matthay MA. Mesenchymal stem cells and acute lung injury. Crit Care Clin. 2011;27(3):719–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Schmidt H, Hoyer D, Rauchhaus M, Prondzinsky R, Hennen R, Schlitt A, et al. ACE-inhibitor therapy and survival among patients with multiorgan dysfunction syndrome (MODS) of cardiac and non-cardiac origin. Int J Cardiol. 2010;140(3):296–303.

    PubMed  Google Scholar 

  137. Dare AJ, Phillips AR, Hickey AJ, Mittal A, Loveday B, Thompson N, Windsor JA. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med. 2009;47(11):1517–25.

    CAS  PubMed  Google Scholar 

  138. Teoh H, Quan A, Creighton AK, Bang KA, Singh KK, Shukla PC, et al. BRCA1 gene therapy reduces systemic inflammatory response and multiple organ failure and improves survival in experimental sepsis. Gene Ther. 2012;20(1):51–61.

    PubMed  Google Scholar 

  139. Cobb JP. MORE for multiple organ dysfunction syndrome: Multiple Organ REanimation, REgeneration, and Reprogramming. Crit Care Med. 2010;38(11): 2242–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ortiz-Leyba MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ortiz-Leyba, C. (2014). Considerations in Organ Failure. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1121-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1121-9_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1120-2

  • Online ISBN: 978-1-4939-1121-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics