Skip to main content

Introduction to Metabolism

  • Chapter
  • First Online:
Surgical Metabolism

Abstract

Metabolism is defined as “1. The chemical processes occurring within a living cell or organism that are necessary for the maintenance of life. 2. The processing of a specific substance within the living body.” This definition simplifies a process that occurs at the cellular level in every living being and is the driving process of our existence. The consumption of energy is the basis of life; an innate and evolutionarily honed drive to maintain homeostasis and fulfill the needs for energy and cellular function. Derangements in metabolism are present with every disease process and may even be the cause. The quest to understand the exchange of energy at the cellular level and to develop novel techniques to manipulate, restore, or control this exchange is as old as medicine itself. The goal of this chapter is to review the history of our understanding of metabolic processes, to discuss normal cellular metabolism in a healthy subject, and to identify ways in which metabolism is altered in injury and illness.

Fasting is a great remedie of fever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “metabolism.” Merriam-Webster.com. 2011. http://www.merriam-webster.com (8 May 2011).

  2. Dunn PM. Aristotle (384–322 bc): philosopher and scientist of ancient Greece. Arch Dis Child Fetal Neonatal Ed. 2006;91(1):F75–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Eknoyan G. Santorio Sanctorius (1561-1636) - founding father of metabolic balance studies. Am J Nephrol. 1999;19(2):226–33.

    CAS  PubMed  Google Scholar 

  4. Karamanou M, Androutsos G. Antoine-Laurent de Lavoisier (1743-1794) and the birth of respiratory physiology. Thorax. 2013. doi:10.1136/thoraxjnl-2013-203840.

    PubMed  Google Scholar 

  5. Fleck A. Obituary Notice: Sir David P. Cuthbertson. Br J Nutr. 1990;63:1–4.

    CAS  PubMed  Google Scholar 

  6. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287–301.

    CAS  PubMed  Google Scholar 

  7. Saffle JR. The 1942 fire at Boston’s Cocoanut Grove nightclub. Am J Surg. 1993;166(6):581–91.

    CAS  PubMed  Google Scholar 

  8. Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Nutr Hosp. 2001;16(6):287–92.

    CAS  PubMed  Google Scholar 

  9. Kudsk KA, Croce MA, Fabian TC, Minard G, Tolley EA, Poret HA, Kuhl MR, Brown RO. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg. 1992;215(5):503–11. discussion 511–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. Perioperative total parenteral nutrition in surgical patients. N Eng J Med. 1991;325(8):525–32.

    Google Scholar 

  11. Bistrian B, Blackburn J, Vitale J, Cochran D, Naylor J. Prevalence of malnutrition in general medical patients. JAMA. 1976;235:1567–70.

    CAS  PubMed  Google Scholar 

  12. Rivers E, Nguyen B, Ressler J, Muzzin A, Knoblich B, Peterson E, et al. Early goal directed therapy in the treatment of severe sepsis and septic shock. NEJM. 2001;345:1368–77.

    CAS  PubMed  Google Scholar 

  13. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz E, et al. Intensive insulin in critically ill patients. NEJM. 2001;345:1359–67.

    PubMed  Google Scholar 

  14. Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNMC, Delarue J, Merger MM. Negative impact of hypocaloric feeding and energy balance on critical outcome in ICU patients. Clin Nutr. 2005;24:502–9.

    PubMed  Google Scholar 

  15. Lin E, Calvano SE, Lowry SF. Systemic response to injury and metabolic support. In: Brunicardi FC, Anderson DK, et al., editors. Schwartz’s principles of surgery. New York: McGraw-Hill; 2005. p. 3–41.

    Google Scholar 

  16. Van Ooijen AM, Lichtenbelt VM, van Steenhoven AA, Westerterp KR. Seasonal changes in metabolic responses to cold in humans. Physiol Behav. 2004;82:545–53.

    PubMed  Google Scholar 

  17. Compher CW, Frankenfield DC, Roth-Yousey L, Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106:881–903.

    PubMed  Google Scholar 

  18. James WPT. From SDA to DIT to TEF. In: Kinney MM, Tucker HN, editors. Energy metabolism tissue determinants and cellular corollaries. New York, NY: Raven; 1992. p. 163–86.

    Google Scholar 

  19. Weissman C, Kemper M, Elwyn DH, Askanazi J, Hyman AI, Kinney JM. The energy patient: an analysis. Chest. 1986;89:254–9.

    CAS  PubMed  Google Scholar 

  20. Wooley JA, Sax HC. Indirect calorimetry: applications to practice. Nutr Clin Pract. 2003;18:434–9.

    PubMed  Google Scholar 

  21. Brandi LS, Bertonlini R, Calafà M. Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition. 1997;13:349–58.

    CAS  PubMed  Google Scholar 

  22. Frankenfield DC, Sarson GY, Blosser SA, Cooney RN, Smith JS. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients. J Am Coll Nutr. 1996;15:397–402.

    CAS  PubMed  Google Scholar 

  23. Ogawa AM, Shikora SA, Burke LM, Heetderks-Cox JE, Bergren CT, Muskat PC. The thermodilution technique for measuring resting energy expenditure does not agree with indirect calorimetry for the critically ill patient. JPEN J Parenter Enteral Nutr. 1998;22:347–51.

    CAS  PubMed  Google Scholar 

  24. Frankenfield DC, Muth E, Rowe WA. The Harris-Benedict studies of human basal metabolism: history and limitations. J Am Diet Assoc. 1998;98:439–45.

    CAS  PubMed  Google Scholar 

  25. Ireton-Jones CS, Jones JD. Why use predictive equations for energy expenditure assessment? Am Diet Assoc. 1997;97:A-44.

    Google Scholar 

  26. Frankenfield DC, Smith JS, Cooney RN. Validation of two approaches to predicting resting metabolic rate in critically ill patients. JPEN J Parenter Enteral Nutr. 2004;28:259–64.

    PubMed  Google Scholar 

  27. Cerra FB, Benitez, Blackburn GL, Irwin RS, Jeejeebhoy K, Katz DP, et al. Applied nutrition in ICU patients: a concensus statement of the American College of Chest Physicians. Chest. 1997;111:769–78.

    CAS  PubMed  Google Scholar 

  28. Wilmore DW. Metabolic response to severe surgical illness: overview. World J Surg. 2000;24:705–11.

    CAS  PubMed  Google Scholar 

  29. Chandramouli V, Ekberg K, Schumann WC, Kalhan SC, Wahren J, Landau BR. Quantifying gluconeogenesis during fasting. Am J Phsiol. 1997;273:E1209–15.

    CAS  Google Scholar 

  30. Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996;53(suppl):S101–6.

    Google Scholar 

  31. McCowen KC, Malhotra A, Bistrian B. Stress-induced hyperglycemia. Crit Care Clin. 2001;17:107–24.

    CAS  PubMed  Google Scholar 

  32. Montori VM, Bistrian BR, McMahon MM. Hyperglycemia in acutely ill patients. JAMA. 2002;288:2167–9.

    PubMed  Google Scholar 

  33. Young LS, Kearns LR, Schoepfel SL. Protein in the chamber. In: Gottschlich MM, editor. The A.S.P.E.N. Nutrition Support Curriculum. Cincinatti: A.S.P.E.N., 2007; p. 71–87.

    Google Scholar 

  34. Jabbar A, Wei-Kuo C, McClave SA, Dryden GW, McClave SA. Gut immunology and the differential response to feeding and starvation. Nutr Clin Pract. 2003;18:461–82.

    PubMed  Google Scholar 

  35. Shaw JH, Wildborne M, Wolfe RR. Whole body protein kinetics in severely septic patients. The response to glucose infusion and total parenteral nutrition. Ann Surg. 1987;205:288–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Reeds PJ. Dispensible and indispensible amino acids for humans. J Nutr. 2000;130:1835S–40.

    CAS  PubMed  Google Scholar 

  37. Griffiths RD, Allen KD, Andrews FJ, Allen KD, Andrews FJ, Jones C. Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition. 2002;18:546–52.

    CAS  PubMed  Google Scholar 

  38. Alpers DH. Glutamine: do the data support the cause for glutamine supplementation in humans? Gastroenterology. 2006;130:S106–16.

    CAS  PubMed  Google Scholar 

  39. Monk D, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 2001;234(2):245–55.

    Google Scholar 

  40. Martindale RG, Zhou M. Nutrition and metabolism. In: O’Leary JP, Tabuenca A, editors. Physiologic basis of surgery. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 112–49.

    Google Scholar 

  41. Wilmore DW. Metabolic management of the critically ill. New York: Plenum; 1977, p. 193.

    Google Scholar 

  42. Stroud M. Protein and the critically ill; do we know what to give? Proc Nutr Soc. 2007;66:378–83.

    CAS  PubMed  Google Scholar 

  43. Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, Nitenberg G, et al. ESPEN (European Society for Parenteral and Enteral Nutrition): ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–33.

    CAS  PubMed  Google Scholar 

  44. Jacobs DG, Jacobs DO, Kudsk KA, Moore FA, Oswanski MF, Poole GV, et al. Practice management guidelines for nutritional support of the trauma patient. J Trauma. 2004;57:660–79.

    PubMed  Google Scholar 

  45. McClave SA, Martindale RG, Vanek VW, et al. A.S.P.E.N. Board of Directors; American College of Critical Care Medicine; Society of Critical Care Medicine: Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J Parenter Enteral Nutr. 2009; 33:277–316.

    Google Scholar 

  46. Chadalavada R, Sappati BRS, Maxwell J, Sappati Biyyani RS, Maxwell J, Mullen K. Nutrition in hepatic encephalopathy. Nutr Clin Pract. 2010;25(3):257–64.

    PubMed  Google Scholar 

  47. Schulz GJ, Campos AC, Coelho JC. The role of nutrition in hepatic encephalopathy. Curr Opin Clin Nutr Metab Care. 2008;11(3):275–80.

    PubMed  Google Scholar 

  48. Garneata L, Mircescu G. Nutritional intervention in uremia – myth or reality? J Ren Nutr. 2010;20(5 Suppl):S31–4.

    PubMed  Google Scholar 

  49. Masson S, Latini R, Tacconi M, Bernasconi R. Incorporation and washout of n-3 polyunsaturated fatty acids after diet supplementation in clinical studies. J Cardiovasc Med (Hagerstown) 2007;8 Suppl 1:S4.

    Google Scholar 

  50. Kudsk KA. Immunonutrition in surgery and critical care. Annu Rev Nutr. 2006;26:463–79.

    CAS  PubMed  Google Scholar 

  51. Calder PC. n-3 fatty acids, inflammation, and immunity – relevance to postsurgical and critically ill patients. Lipids. 2004;39(12):1147–61.

    CAS  PubMed  Google Scholar 

  52. Kumar KV, Rao SM, Gayani R, Mohan IK, Naudu MU. Oxidant stress and essential fatty acids in patients with risk and established ARDS. Clin Chim Acta. 2000;298(1–2):111–20.

    CAS  PubMed  Google Scholar 

  53. Gadek JE, et al. Enteral nutrition in ARDS study group. Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Crit Care Med. 1999;27(8):1409–20.

    CAS  PubMed  Google Scholar 

  54. Singer P, DeMichele SJ, Karlstad MD, Pacht ER, et al. Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med. 2006;34(4):1033–8.

    CAS  PubMed  Google Scholar 

  55. Pontes-Arruda A, Aragão AM, Albuquerque JD. Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med. 2006;34(9):2325–33.

    CAS  PubMed  Google Scholar 

  56. Munroe C, Frantz D, Martindale RG, McClave SA. The optimal lipid formulation in enteral feeding in critical illness: clinical update and review of the literature. Curr Gastroenterol Rep. 2011;13:368–75.

    PubMed  Google Scholar 

  57. Calder PC, Dangour AD, Diekman C, Eilander A, Koletzko B, Meijer GW, et al. Essential fats for future health. Proceedings of the 9th Unilever nutrition symposium, 26–27 May 2010. Eur J Clin Nutr. 2010;64 Suppl 4:S1–13.

    Google Scholar 

  58. Vanek VW, Borum P, Buchman A, et al. A.S.P.E.N. Position paper: Recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr Clin Pract. 2012;27(4):440–91.

    Google Scholar 

  59. Hou CT, Wu YH, Huang PN, Cheng CH, Huang YC. Higher plasma pyridoxal 5′-phosphate is associated with better blood glucose responses in critically ill surgical patients with inadequate vitamin B-6 status. Clin Nutr. 2011;30(4):478–83.

    CAS  PubMed  Google Scholar 

  60. Hou CT, Wu YH, Cheng C, Huang PN, Huang YC. Higher plasma homocysteine is associated with lower vitamin B6 status in critically ill surgical patients. Nutr Clin Pract. 2012;27(5):695–700.

    PubMed  Google Scholar 

  61. Cheng CH, Chang SJ, Lee BJ, Chang SJ, Lee BJ, Lin KL, Huang YC. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur J Clin Nutr. 2006;60(10):1207–13.

    CAS  PubMed  Google Scholar 

  62. Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14(6):610–7.

    CAS  PubMed  Google Scholar 

  63. Vasilaki AT, McMillan DC, Kinsella J, Duncan A, O’Reilly DS, Talwar D. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness. Clin Chim Acta. 2010;411(21–22):1750–5.

    CAS  PubMed  Google Scholar 

  64. Gariballa S, Forster S, Powers H. Riboflavin status in acutely ill patients and response to dietary supplements. JPEN J Parenter Enteral Nutr. 2009;33(6):656–61.

    CAS  PubMed  Google Scholar 

  65. Roy CC, Bouthillier L, Seidman E, Levy E. New lipids in enteral feeding. Curr Opin Clin Nutr Metab Care. 2004;7(2):117–22.

    CAS  PubMed  Google Scholar 

  66. Calder PC, Deckelbaum RJ. Harmful, harmless or helpful? The n-6 fatty acid debate goes on. Curr Opin Clin Nutr Metab Care. 2011;14(2):113–4.

    PubMed  Google Scholar 

  67. Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70(3Suppl):560S–9S.

    Google Scholar 

  68. Calder PC. The 2008 ESPEN Sir David Cuthbertson Lecture: Fatty acids and inflammation – from the membrane to the nucleus and from the laboratory bench to the clinic. Clin Nutr. 2010;29(1):5–12.

    CAS  PubMed  Google Scholar 

  69. Fan YY, Chapkin RS. Importance of dietary gamma-linolenic acid in human health and nutrition. J Nutr. 1998;128(9):1411–4.

    CAS  PubMed  Google Scholar 

  70. Singer P, Shapiro H, Theilla M, Anbar R, Singer J, Cohen J. Anti-inflammatory properties of omega-3 fatty acids in critical illness: novel mechanisms and an integrative perspective. Intensive Care Med. 2008;34(9):1580–92.

    CAS  PubMed  Google Scholar 

  71. Supinski GS, Vanags J, Callahan LA. Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. Crit Care. 2010;14(2):R35.

    PubMed Central  PubMed  Google Scholar 

  72. Tiesset H, Pierre M, Desseyn JL, Guéry B, Beermann C, Galabert C, Gottrand F, Husson MO. Dietary (n-3) polyunsaturated fatty acids affect the kinetics of pro- and anti-inflammatory responses in mice with Pseudomonas aeruginosa lung infection. J Nutr. 2009;139(1):82–9.

    CAS  PubMed  Google Scholar 

  73. Gadek JE, DeMichele SJ, Karlstad MD, Pacht ER, Donahoe M, Albertson TE, et al. Effect of enteral feeding with Eicosapentaenoic acid, gamma-linolenic acid and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med. 1999;27(8):1409–20.

    CAS  PubMed  Google Scholar 

  74. Pacht ER, DeMichele SJ, Nelson JL, Hart J, Wennberg AK, Gadek JE. Enteral nutrition with Eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome. Crit Care Med. 2003;31(2):491–500.

    CAS  PubMed  Google Scholar 

  75. Chang CS, Sun HL, Lii CK, Chen HW, Chen PY, Liu KL. Gamma-linolenic acid inhibits inflammatory responses by regulating NF-kappaB and AP-1 activation in lipopolysaccharide-induced RAW 264.7 macrophages. Inflammation. 2010;33(1):46–57.

    CAS  PubMed  Google Scholar 

  76. Mancuso P, Whelan J, DeMichele SJ, Snider CC, Guszcza JA, Karlstad MD. Dietary fish oil and fish and borage oil suppress intrapulmonary proinflammatory eicosanoid biosynthesis and attenuate pulmonary neutrophil accumulation in endotoxic rats. Crit Care Med. 1997;25(7):1198–206.

    CAS  PubMed  Google Scholar 

  77. Murray MJ, Kumar M, Gregory TJ, Banks PL, Tazelaar HD, DeMichele SJ. Select dietary fatty acids attenuate cardiopulmonary dysfunction during acute lung injury in pigs. Am J Physiol. 1995;269(6 Pt 2):H2090–9.

    CAS  PubMed  Google Scholar 

  78. Calder PC. Satellite symposium: throw another fish on the fire: the role of n-3 in inflammation. Rationale and use of n-3 fatty acids in artificial nutrition. Proc Nutr Soc. 2010;36(2):289–95.

    Google Scholar 

  79. Martindale RG, McClave SA, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition: Executive Summary. Crit Care Med. 2009;37(5):1757–61.

    PubMed  Google Scholar 

  80. Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27:84–90.

    CAS  PubMed  Google Scholar 

  81. Wischmeyer P. Glutamine: role in gut protection in critical illness. Curr Opin Clin Nutr. 2006;9:607–12.

    CAS  Google Scholar 

  82. Novak F, Heyland DK, Avenell A, Heyland DK, Avenell A, Drover JW, Su X. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med. 2002;30:2022–9.

    CAS  PubMed  Google Scholar 

  83. Macario AJL, Conway de Macario E. Sick chaperones, cellular stress and disease. NEJM. 2005;353:1489–1501.

    Google Scholar 

  84. Oliveira GP, Dias CM, Rocco PR. Understanding the mechanisms of glutamine action in critically ill patients. Ann Acad Bras Cienc. 2010;82(2):417–30.

    CAS  Google Scholar 

  85. Kelly D, Wischmeyer PE. Role of L-glutamine in critical illness: new insights. Curr Opin Clin Nutr Metab Care. 2003;6(2):217–22.

    CAS  PubMed  Google Scholar 

  86. Singleton KD, Beckey VE, Wischmeyer PE. Glutamine prevents activation of nfkappab and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock. 2005;24(6):583–9.

    CAS  PubMed  Google Scholar 

  87. Zhou M, Martindale RG. Arginine in the critical care setting. J Nutr. 2007;137:1687S–92.

    CAS  PubMed  Google Scholar 

  88. Albina JE, Mills CD, Henry Jr WL, Caldwell MD. Regulation of macrophage physiology by L-arginine: role of the oxidative L-arginine deaminase pathway. J Immunol. 1989;143:3641–6.

    CAS  PubMed  Google Scholar 

  89. Morris SM. Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care. 2004;7:45–51.

    CAS  PubMed  Google Scholar 

  90. Chiarla C, Giovannini I, Siegel JH. Plasma arginine correlations in trauma and sepsis. Amino Acids. 2006;30:81–6.

    CAS  PubMed  Google Scholar 

  91. Arrigoni F, Ahmetaj B, Leiper J. The biology and therapeutic potential of the DDAH/AMDA pathway. Curr Pharm Des. 2010;16(37):4089–102.

    CAS  PubMed  Google Scholar 

  92. Pope AJ, Karrupiah K, Xia Y, Karrupiah K, Kearns PN, Xia Y, Cardounel AJ. Role of dimethylarginine dimethylaminohydrolases in the regulation of nitric oxide production. J Biol Chem. 2009;284(51):36338–47.

    Google Scholar 

  93. Fortin CF, McDonald PP, Fülöp T, Lesur O. Sepsis, leukocytosis, and nitric oxide (NO): an intricate affair. Shock. 2010;33(4):344–52.

    CAS  PubMed  Google Scholar 

  94. Suchner U, Heyland DK, Peter K. Immune-modulatory actions of arginine in the critically ill. Br J Nutr. 2002;87 Suppl 1:S121–32.

    CAS  PubMed  Google Scholar 

  95. Kao CC, Bandi V, Guntupalli KK, Wu M, Castillo L, Jahoor F. Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci (Lond). 2009;117(1):23–30.

    CAS  Google Scholar 

  96. Luiking YC, Poeze M, Ramsay G, Deutz NE. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89(1):142–52.

    CAS  PubMed  Google Scholar 

  97. Pan M, Choudry HA, Epler MJ, Meng Q, Karinch A, Lin C, Souba W. Arginine transport in catabolic disease states. J Nutr. 2004;134:2826S–9S; discussion 2853S.

    Google Scholar 

  98. Piton G, Belon F, Cypriani B, Regnard J, Puyraveau M, Manzon C, et al. Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit Care Med. 2013;41:2169–76.

    PubMed  Google Scholar 

  99. Seigel JH, Cerra FB, Coleman B, Giovannini I, Shetye M, Border JR, McMenamy RH. Physiological and metabolic correlations in human sepsis. Surgery. 1979;86:163–93.

    Google Scholar 

  100. Cuthbertson DP. Surgical metabolism: historical and evolutionary aspects. In: Wilkinson AW, Cuthbertson DP, editors. Metabolism and the response to injury. Chicago: Year Book Medical Publishers; 1977. p. 1.

    Google Scholar 

  101. Wilmore DW, Goodwin CW, Aulick LH, Powanda MC, Mason Jr AD, Pruitt Jr BA. Effect of injury and infection on visceral metabolism and circulation. Ann Surg. 1980;192:491.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Wilmore DW. Metabolic management of the critically ill. New York: Plenum; 1980.

    Google Scholar 

  103. Hwang TL, Huang SL, Chen MF. The use of indirect calorimetry in critically ill patients-the relationship of measured energy expenditure to Injury Severity Score, Septic Severity Score, and APACHE II Score. J Trauma. 1993;34(2):247–51.

    CAS  PubMed  Google Scholar 

  104. Lawrence PF. Essentials of general surgery. 3rd ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 1997.

    Google Scholar 

  105. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Wu B, Fukuo K, Suzuki K, Yoshino G, Kazumi T. Relationships of systemic oxidative stress to body fat distribution, adipokines, and inflammatory markers in healthy middle-aged women. Endocr J. 2009;56(6):773–82.

    CAS  PubMed  Google Scholar 

  107. Dossett LA, Heffernan D, Lightfoot M, Collier B, Diaz JJ, Sawyer RG, May AK. Obesity and pulmonary complications in critically injured adults. Chest. 2008;134(5):974–80.

    PubMed Central  PubMed  Google Scholar 

  108. Winfield RD, Delano MJ, Dixon DJ, Schierding WS, Cendan JC, Lottenberg L, et al. Differences in outcome between obese and nonobese patients following severe blunt trauma are not consistent with an early inflammatory genomic response. Crit Care Med. 2010;38(1):51–8.

    PubMed Central  PubMed  Google Scholar 

  109. Alban RF, Lyass S, Bargulies DR, Shabot MM. Obesity does not affect mortality after trauma. Ann Surg. 2006;72(10):966–9.

    Google Scholar 

  110. Dossett LA, Dageforde LA, Swenson BR, Metzger R, Bonatti H, Sawyer RG, May AK. Obesity and site specific nosocomial infection risk in the intensive care unit. Surg Infect. 2009;10(2):137–48.

    Google Scholar 

  111. Khaodhiar L, McCowen KC, Blackburn GL. Obesity and its comorbid conditions. Clin Cornerstone. 1999;2(3):17–31.

    CAS  PubMed  Google Scholar 

  112. Muñoz E, Rosner F, Friedman R, Sterman H, Goldstein J, Wise L. Financial risk, hospital cost, and complications and comorbidities in medical non-complications and comorbidity-stratified diagnosis-related groups. Am J Med. 1988;84(5):933–9.

    PubMed  Google Scholar 

  113. Neville AL, Brown CV, Weng J, Demetriades D, Velmahos GC. Obesity is an independent risk factor of mortality in severely injured blunt trauma patients. Arch Surg. 2004;139(9):983–7.

    PubMed  Google Scholar 

  114. Brown CV, Neville AL, Rhee P, Salim A, Velmahos GC, Demetriades D. The impact of obesity on the outcomes of 1,153 critically injured blunt trauma patients. J Trauma. 2005;59(5):1048–51.

    PubMed  Google Scholar 

  115. Choban PS, Weireter Jr LJ, Maynes C. Obesity and increased mortality in blunt trauma. J Trauma. 1991;31(9):1253–57.

    CAS  PubMed  Google Scholar 

  116. Bochicchio GV, Joshi M, Bochicchio K, Nehman S, Tracy JK, Scalea TM. Impact of obesity in the critically ill trauma patient: a prospective study. J Am Coll Surg. 2006;203(4):533–8.

    PubMed  Google Scholar 

  117. Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atherosclerosis. Am J Physiol Heart Circ Physiol. 2005;288(5):H2031–41.

    CAS  PubMed  Google Scholar 

  118. Berg JM, Tymoczko JL, Starvation SL. Biochemistry. 5th ed. New York: W. H. Freeman; 2002.

    Google Scholar 

  119. Felig P, Marliss EB, Cahill Jr GF. Metabolic response to human growth hormone during prolonged starvation. J Clin Invest. 1971;50(2):411–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Dietch EA. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg. 1992;216(2):117–34.

    Google Scholar 

  121. Rivers EP, McIntyre L, Rivers KK. Early and innovative interventions for severe sepsis and septic shock: taking advantage of a window of opportunity. CMAJ. 2005;173(9):1054–65.

    PubMed Central  PubMed  Google Scholar 

  122. Song Z, Song Y, Yin J, Shen Y, Yao C, Sun Z, et al. Genetic variation in the TNF gene is associated with susceptibility to severe sepsis, but not with mortality. PLoS One. 2012;7(9):e46113.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Song Z, Yin J, Yao C, Sun Z, Shao M, Zhang Y, et al. Variants in the Toll interacting protein gene are associated with susceptibility to sepsis. Crit Care. 2011;15(1):R12.

    PubMed Central  PubMed  Google Scholar 

  124. Song Z, Yao C, Yin J, Tong C, Zhu D, Sun Z, Jiang J, et al. Genetic variation in the TNF receptor associated factor 6 gene is associated with susceptibility to sepsis induced acute lung injury. J Transl Med. 2012;10:166.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Reid CL, Perrey C, Pravica V, Hutchinson IV, Campbell IT. Genetic variation in proinflammatory and anti-inflammatory cytokine production in multiple organ dysfunction syndrome. Crit Care Med. 2002;30(10):2216–21.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy M. Lawson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawson, C.M., Long, C.A., Bollig, R., Daley, B.J. (2014). Introduction to Metabolism. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1121-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1121-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1120-2

  • Online ISBN: 978-1-4939-1121-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics