Skip to main content

Modeling the Gas Flow Process Inside Exhaust Systems: One Dimensional and Multidimensional Approaches

  • Chapter
  • First Online:
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts

Part of the book series: Fundamental and Applied Catalysis ((FACA))

  • 4902 Accesses

Abstract

This chapter describes the numerical models adopted for the simulation of the internal flows inside exhaust systems of internal combustion engines, with particular focus on the part of the system upstream of the catalytic converter. Particular attention is paid to the modeling of the dosing system, which requires a correct numerical description of the spray evolution inside the gas stream, and its subsequent interaction with pipe walls (or eventual mixing device) and the dynamics of the liquid film. The simulation of all these processes is mandatory when an optimization of the exhaust systems is addressed in order to improve the abatement efficiency of the SCR system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Forzatti. Present status and perpectives in de-NO x catalysis. Applied Catalysis, 222:221–236, 2001.

    Google Scholar 

  2. G. Montenegro and A. Onorati. 1d thermo-fluid dynamic modelling of de-nox scr systems for diesel engine exhaust gas after-treatment. Int. J. of Vehicle Design, 41(No.1/2/3/4):285–306, 2006.

    Google Scholar 

  3. G. Montenegro and A. Onorati. 1d thermo-fluid dynamic modeling of reacting flows inside three-way catalytic converters. SAE International Journal of Engines, 2(1):1–16, 2009.

    Google Scholar 

  4. A. Onorati, G. Ferrari, G. D’Errico, and G. Montenegro. The prediction of 1d unsteady flows in the exhaust system of a si engine including chemical reactions in the gas and solid phase. SAE Technical Paper, SAE Transactions J. Engines, pages 01–0003, 2002.

    Google Scholar 

  5. J. Wurzenberger, G. Auzinger, R. Heinzle, and R. Wanker. 1d modelling of reactive fluid dynamics, cold start behavior of exhaust systems. SAE Technical Paper, 2006-01-1544, 2006.

    Google Scholar 

  6. T. Morel, J. Silvestri, K. Goerg, and R. Jebasinski. Modeling of engine exhaust acoustics. SAE Technical Paper, 1999-01-1665, 1999.

    Google Scholar 

  7. A. Onorati, M. Perotti, and S. Rebay. Modelling one-dimensional unsteady flows in ducts: Symmetric finite difference schemes versus galerkin discontinuous finite element methods. International Journal of Mechanical Sciences, 39(11):1213–1236, 1997.

    Google Scholar 

  8. D. E. Winterbone and R. J. Pearson. Theory of engine manifold design. Professional Engeneering Publishing, London, 2000.

    Google Scholar 

  9. A. Burcat and B. Ruscic. Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. Report TAE960, 2005.

    Google Scholar 

  10. R. W. MacCormack. A numerical method for solving the equations of compressible viscous flow. AIAA, 81-0110, 1981.

    Google Scholar 

  11. P. D. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure Appl. Math., 13:217–237, 1960.

    Google Scholar 

  12. M. Chapman, J. M. Novak, and R. A. Stein. Numerical modeling of inlet and exhaust flows in multi-cylinder internal combustion engines. ASME Winter Annual Meeting, 1982.

    Google Scholar 

  13. G. Montenegro, A. Della Torre, A. Onorati, R. Fairbrother, and A. Dolinar. Development and application of 3d generic cells to the acoustic modelling of exhaust systems. SAE 2011 Noise and Vibration Conference and Exhibition, 2011-01-1526, 2011.

    Google Scholar 

  14. E. Jean, V. Leroy, G. Montenegro, A. Onorati, and Laurell. M. Impact of ultra low thermal inertia manifolds on emission performance. SAE Technical Paper, 2007-01-0935, 2007.

    Google Scholar 

  15. S. W. Churchill. Comprehensive Correlating Equations for Heat, Mass and Momentum Transfer in Fully Developed Flow in Smooth Tubes. Ind. Eng. Chem. Fundam., 16:109–116, 1977.

    Google Scholar 

  16. S. W. Churchill. Friction-Factor Equation Spans all Fluid Flow Regimes. Chem. Eng., pages 91–92, 1977.

    Google Scholar 

  17. R. J. Clarkson and S. F. Benjamin. Modelling the Effect of Moisture on Catalyst Warm-Up. IMechE, 1995.

    Google Scholar 

  18. S. H. Chan and D. L. Hoang. Chemical Reactions in the Exhaust System of a Cold-Start Engine. Chem. Eng. Technol., 8:727–730, 2000.

    Google Scholar 

  19. S. Heller and G. Wachtmeister. Analysis and modeling of heat transfer in the si engine exhaust system during warm-up. SAE Technical Paper, 2007-01-1092, 2007.

    Google Scholar 

  20. S.M. Ghiaasiaan. Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems. Cambridge University Press, 2007.

    Google Scholar 

  21. Y. Taitel and A.E. Dukler. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal, 22(1):JANUARY, 1976, 1976. cited By (since 1996) 282.

    Google Scholar 

  22. Christopher Depcik, Bram van Leer, and Dennis Assanis. The numerical simulation of variable-property reacting-gas dynamics: New insights and validation. Numerical Heat Transfer, Part A: Applications, 47(1):27–56, 2004.

    Google Scholar 

  23. V.I. Terekhov and M.A. Pakhomov. The numerical modeling of the tube turbulent gas-drop flow with phase changes. International Journal of Thermal Sciences, 43(6):595–610, 2004.

    Google Scholar 

  24. C. Baumgarten. Mixture Formation in Internal Combustion Engines. Heat and Mass Transfer. Springer, 2006.

    Google Scholar 

  25. M. Koebel, M. Elsner, and G. Madia. Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO2 at Low Temperature. Ind. Eng. Chem. Res., 40:52–59, 2001.

    Google Scholar 

  26. S. D. Yim, S. J. Kim, J. H. Baik, I. S. Nam, Y. S. Mok, Lee J. H., Cho B. K., and S. H. Oh. Decomposition of Urea into NH3 for the SCR process. Ind. Eng. Chem. Res., 43:4856–4863, 2004.

    Google Scholar 

  27. R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2002.

    Google Scholar 

  28. J.H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer, 2002.

    Google Scholar 

  29. C. Hirsch. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Number v. 1 in Butterworth Heinemann. Elsevier Science, 2007.

    Google Scholar 

  30. H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Addison-Wesley, Longman, 1995.

    Google Scholar 

  31. V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7):1510–1520, 1992.

    Google Scholar 

  32. F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994.

    Google Scholar 

  33. S. Fischer, R. Bitto, T. Lauer, and C. et al. Krenn. Impact of the turbulence model and numerical approach on the prediction of the ammonia homogenization in an automotive scr system. SAE Int. J. Engines, 5(3):1443–1458, 2012.

    Google Scholar 

  34. G. Stiesch. Modeling Engine Spray and Combustion Processes. Springer, 2003.

    Google Scholar 

  35. M. Boileau, S. Pascaud, E. Riber, B. Cuenot, L.Y.M. Gicquel, T.J. Poinsot, and M. Cazalens. Investigation of two-fluid methods for large eddy simulation of spray combustion in gas turbines. Flow, Turbulence and Combustion, 80:291–321, 2008.

    Google Scholar 

  36. S Hoyas, J.M. Pastor, D. Khuong-Anh, J. M. Momp-Laborda, and F. Ravet. Evaluation of the eulerian-lagrangian spray atomisation (elsa) in spray simulations. Int. J. Vehicle Systems Modelling And Testing., 6(3/4), 2011.

    Google Scholar 

  37. F. V. Bracco. Modeling of Engine Sprays. SAE Paper, 850394, 1985.

    Google Scholar 

  38. R. D. Reitz. Modeling Atomization Processes In High Pressure Vaporizing Sprays. Atomization and Spray Technology, Vol. 3:pp. 309–337, 1987.

    Google Scholar 

  39. Henrik Stram, Andreas Lundstram, and Bengt Andersson. Choice of urea-spray models in cfd simulations of urea-scr systems. Chemical Engineering Journal, 150(1):69–82, 2009.

    Google Scholar 

  40. G. D’Errico, D. Ettorre, and T. Lucchini. Simplified and Detailed Chemistry Modeling of Constant-Volume Diesel Combustion Experiments. SAE Paper, 2008-01-0954, 2008.

    Google Scholar 

  41. D. Stanton, A. Lippert, R. D. Reitz, and C. J. Rutland. Influence of Spray-Wall Interaction and Fuel Films on Cold Starting in Direct Injection Diesel Engines. SAE Paper, 982584, 1998.

    Google Scholar 

  42. A. V. Kolpakov et al. Calculation of the Rebound Condition for Colliding Drops of Sharply Different Sizes. Kollodn. Zh., Vol. 47, 1985.

    Google Scholar 

  43. D.Stanton and C. J. Rutland. Modeling fuel film formation and wall interaction in diesel engines. SAE Paper 960628, 1996.

    Google Scholar 

  44. A. L. Yarin and D. A. Weiss. Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a new Type of Kinematic Discontinuity. Journal of Fluid Mechanics, Vol. 283, 1995.

    Google Scholar 

  45. W. E. Ranz and W. R. Marshall. Evaporation from drops. Chem. Eng. Prog., 48:141–146, 1952.

    Google Scholar 

  46. P. J. O’Rourke. Statistical Properties and Numerical Implementation of a Model for Droplet Dispersion in a Turbulent Gas. Journal of Computational Physics, Vol. 83:345–360, 1989.

    Google Scholar 

  47. R. J. Haywood, M. Renksizbulut, and G. D. Raithby. Numerical solution of deforming evaporating droplets at intermediate reynolds numbers. Numerical Heat Transfer, Part A: Applications, 26(3):253–272, 1994.

    Google Scholar 

  48. B.T Helenbrook and C.F Edwards. Quasi-steady deformation and drag of uncontaminated liquid drops. International Journal of Multiphase Flow, 28(10):1631–1657, 2002.

    Google Scholar 

  49. S. Kontin, A. Höfler, R. Koch, and H.-J. Bauer. Heat and mass transfer accompanied by crystallisation of single particles containing urea-water-solution. In ILASS-Europe 2010 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech republic, September 2012.

    Google Scholar 

  50. A Lundström, B Waldheim, H Ström, and B Westerberg. Modelling of urea gas phase thermolysis and theoretical details on urea evaporation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(10):1392–1398, 2011.

    Google Scholar 

  51. Felix Birkhold, Ulrich Meingast, Peter Wassermann, and Olaf Deutschmann. Modeling and simulation of the injection of urea-water-solution for automotive scr denox-systems. Applied Catalysis B: Environmental, 70(14):119–127, 2007. Papers presented at the 4th International Conference on Environmental Catalysis (4th ICEC)Heidelberg, Germany, June 05 08, 2005.

    Google Scholar 

  52. J. W. Kiedaisch and S. P. Gravante. Calibration of cfd spray model parameters using detailed experimental sray characterization data. In ICLASS 2009, 11th Triennial International Conference on Liquid Atomization and Spray Systems, Vail, Colorado, US, July 2009.

    Google Scholar 

  53. D.T. Ryddner and M.F. Trujillo. A fully resolved uws droplet simulation. In ILASS-Americas, 24th Annual Conference on Liquid Atomization and Spray Systems, San Antonio, Texas, US, May 2012.

    Google Scholar 

  54. Tae Joong Wang, Seung Wook Baek, Seung Yeol Lee, Dae Hwan Kang, and Gwon Koo Yeo. Experimental investigation on evaporation of urea-water-solution droplet for scr applications. AIChE Journal, 55(12):3267–3276, 2009.

    Google Scholar 

  55. A Lundstrm, B Waldheim, H Strm, and B Westerberg. Modelling of urea gas phase thermolysis and theoretical details on urea evaporation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(10):1392–1398, 2011.

    Google Scholar 

  56. Andreas M. Bernhard, Izabela Czekaj, Martin Elsener, Alexander Wokaun, and Oliver Kröcher. Evaporation of urea at atmospheric pressure. The Journal of Physical Chemistry A, 115(12):2581–2589, 2011.

    Google Scholar 

  57. A. A. Kozyro, A. P. Krasulin, V. V. Simirskii, and V. S. Markovnik. Thermodynamic properties of tetramethylurea. Russ. J. Phys. Chem. (Engl. Transl.), 62(10):895–897, 1988.

    Google Scholar 

  58. H. Foucart, C. Habchi, J. F. Le Coz, and T. Baritaud. Development of a three-dimensional model of wall fuel liquid film for internal combustion engines. SAE Paper 980133, 1998.

    Google Scholar 

  59. M. Trujillo and C. F. Lee. Modeling film dynamics in spray impingement. Journal of Fluids Engineering, 2003.

    Google Scholar 

  60. Ž. Tukovic and H Jasak. Simulation of free-rising bubble with soluble surfactant using moving mesh finite volume/area method. In 6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries. SINTEF/NTNU, June 2008.

    Google Scholar 

  61. F. Birkhold, U. Meingast, P. Wassermann, and O. Deutschmann. Analysis of the injection of urea-water-solution for automotive scr denox-systems: Modeling of two-phase flow and spray/wall-interaction. SAE Technical Papers, 2006. cited By (since 1996)24.

    Google Scholar 

  62. H.G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620, 1998.

    Google Scholar 

  63. G. Montenegro, A. Onorati, F. Piscaglia, and G. D’Errico. Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems. SAE Technical Paper, 2007-01-0495, 2007.

    Google Scholar 

  64. W.H. Press. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 2007.

    Google Scholar 

  65. J. F. Le Coz, C. Catalano, and T. Baritaud. Application of laser induced fluorescence for measuring the thickness of liquid films on trasparent walls. In 7th Int. Symposium on application of laser techniques to fluid mechanics, 1997.

    Google Scholar 

  66. T. Lucchini, G. D’Errico, G. M. Brusiani, F. and. Bianchi, Z. Tukovic, and H. Jasak. Multi-dimensional modeling of the air/fuel mixture formation process in a pfi engine for motorcycle applications. SAE Technical Paper,, 2009-24-0015, 2009.

    Google Scholar 

  67. H. Weltens, H. Bressler, F. Terres, H. Neumaier, H. Neumaier, and D. Rammoser. Optimisation of catalytic converter gas flow distribution by cfd prediction. SAE Technical Paper, 930780, 1993.

    Google Scholar 

  68. Thomas L. McKinley, Andrew G. Alleyne, and Chia-Fon Lee. Mixture non-uniformity in scr systems: Modeling and uniformity index requirements for steady-state and transient operation. SAE International Journal of Fuels and Lubricants, 3(1):486–499, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Montenegro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montenegro, G., Onorati, A. (2014). Modeling the Gas Flow Process Inside Exhaust Systems: One Dimensional and Multidimensional Approaches. In: Nova, I., Tronconi, E. (eds) Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts. Fundamental and Applied Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8071-7_17

Download citation

Publish with us

Policies and ethics