Skip to main content

Data Mining Methods for Recommender Systems

  • Chapter
Book cover Recommender Systems Handbook

Abstract

In this chapter, we give an overview of the main Data Mining techniques used in the context of Recommender Systems. We first describe common preprocessing methods such as sampling or dimensionality reduction. Next, we review the most important classification techniques, including Bayesian Networks and Support Vector Machines. We describe the k-means clustering algorithm and discuss several alternatives. We also present association rules and related algorithms for an efficient training process. In addition to introducing these techniques, we survey their uses in Recommender Systems and present cases where they have been successfully applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that a similarity measure is not a preprocessing step in itself but rather a prerequisite for being able to execute other data mining processes.

  2. 2.

    http://eigentaste.berkeley.edu.

  3. 3.

    http://www.netflixprize.com.

  4. 4.

    http://www.cs.umn.edu/~karypis/metis.

References

  1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749, 2005.

    Article  Google Scholar 

  2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, 1994.

    Google Scholar 

  3. A. Ahmed and E. Xing. Scalable dynamic nonparametric bayesian models of content and users. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI’13, pages 3111–3115. AAAI Press, 2013.

    Google Scholar 

  4. X. Amatriain. Big & personal: data and models behind netflix recommendations. In Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, pages 1–6. ACM, 2013.

    Google Scholar 

  5. X. Amatriain. Mining large streams of user data for personalized recommendations. ACM SIGKDD Explorations Newsletter, 14(2):37–48, 2013.

    Article  Google Scholar 

  6. X. Amatriain, N. Lathia, J. M. Pujol, H. Kwak, and N. Oliver. The wisdom of the few: A collaborative filtering approach based on expert opinions from the web. In Proc. of SIGIR ’09, 2009.

    Google Scholar 

  7. X. Amatriain, J. M. Pujol, and N. Oliver. I like it i like it not: Evaluating user ratings noise in recommender systems. In UMAP ’09, 2009.

    Google Scholar 

  8. X. Amatriain, J. M. Pujol, N. Tintarev, and N. Oliver. Rate it again: Increasing recommendation accuracy by user re-rating. In Recys ’09, 2009.

    Google Scholar 

  9. M. Anderson, M. Ball, H. Boley, S. Greene, N. Howse, D. Lemire, and S. McGrath. Racofi: A rule-applying collaborative filtering system. In Proc. IEEE/WIC COLA’03, 2003.

    Google Scholar 

  10. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, Jan. 2008.

    Article  Google Scholar 

  11. B. D. Baets. Growing decision trees in an ordinal setting. International Journal of Intelligent Systems, 2003.

    Google Scholar 

  12. S. Balakrishnan and S. Chopra. Collaborative ranking. In Proceedings of the fifth ACM international conference on Web search and data mining, pages 143–152. ACM, 2012.

    Google Scholar 

  13. S. Banerjee and K. Ramanathan. Collaborative filtering on skewed datasets. In Proc. of WWW ’08, 2008.

    Google Scholar 

  14. D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press. 2012.

    Google Scholar 

  15. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In In Proceedings of the Fifteenth National Conference on Artificial Intelligence, pages 714–720. AAAI Press, 1998.

    Google Scholar 

  16. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In AAAI Workshop on Recommender Systems, 1998.

    Google Scholar 

  17. R. M. Bell, Y. Koren, and C. Volinsky. The bellkor solution to the netflix prize. Technical report, AT&T Labs – Research, 2007.

    Google Scholar 

  18. A. Bhasin. Beyond ratings and followers. In Proceedings of the 6th ACM Conference on Recommender Systems, RecSys ’12, 2012.

    Google Scholar 

  19. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

    Google Scholar 

  20. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, Mar. 2003.

    MATH  Google Scholar 

  21. A. Bouza, G. Reif, A. Bernstein, and H. Gall. Semtree: ontology-based decision tree algorithm for recommender systems. In International Semantic Web Conference, 2008.

    Google Scholar 

  22. A. Bozzon, G. Prandi, G. Valenzise, and M. Tagliasacchi. A music recommendation system based on semantic audio segments similarity. In Proceeding of Internet and Multimedia Systems and Applications - 2008, 2008.

    Google Scholar 

  23. M. Brand. Fast online svd revisions for lightweight recommender systems. In SIAM International Conference on Data Mining (SDM), 2003.

    Google Scholar 

  24. J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence, page 43–52, 1998.

    Google Scholar 

  25. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

    Article  MATH  Google Scholar 

  26. R. Burke. Hybrid web recommender systems. pages 377–408. 2007.

    Google Scholar 

  27. W. Cheng, J. Hühn, and E. Hüllermeier. Decision tree and instance-based learning for label ranking. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pages 161–168, New York, NY, USA, 2009. ACM.

    Google Scholar 

  28. Y. Cho, J. Kim, and S. Kim. A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications, 2002.

    Google Scholar 

  29. C. Christakou and A. Stafylopatis. A hybrid movie recommender system based on neural networks. In ISDA ’05: Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, pages 500–505, 2005.

    Google Scholar 

  30. W. Cohen. Fast effective rule induction. In Machine Learning: Proceedings of the 12th International Conference, 1995.

    Google Scholar 

  31. M. Connor and J. Herlocker. Clustering items for collaborative filtering. In SIGIR Workshop on Recommender Systems, 2001.

    Google Scholar 

  32. T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, 13(1):21–27, 1967.

    Article  MATH  Google Scholar 

  33. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, March 2000.

    Book  Google Scholar 

  34. S. Deerwester, S. T. Dumais, G. W. Furnas, L. T. K., and R. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41, 1990.

    Google Scholar 

  35. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.

    Article  Google Scholar 

  36. I. D. E. Montanés, J.-R. Quevedo and J. Ranilla. Collaborative tag recommendation system based on logistic regression. In ECML PKDD Discovery Challenge 09, 2009.

    Google Scholar 

  37. B. S. et al. Recommender systems for large-scale e-commerce: Scalable neighborhood formation using clustering. In Proceedings of the Fifth International Conference on Computer and Information Technology, 2002.

    Google Scholar 

  38. K. O. et al. Context-aware svm for context-dependent information recommendation. In International Conference On Mobile Data Management, 2006.

    Google Scholar 

  39. P. T. et al. Introduction to Data Mining. Addison Wesley, 2005.

    Google Scholar 

  40. S. G. et al. Tv content recommender system. In AAAI/IAAI 2000, 2000.

    Google Scholar 

  41. S. H. et al. Aimed- a personalized tv recommendation system. In Interactive TV: a Shared Experience, 2007.

    Google Scholar 

  42. T. B. et al. A trail based internet-domain recommender system using artificial neural networks. In Proceedings of the Int. Conf. on Adaptive Hypermedia and Adaptive Web Based Systems, 2002.

    Google Scholar 

  43. Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933–969, 2003.

    MathSciNet  Google Scholar 

  44. B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 307, 2007.

    Google Scholar 

  45. J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages 1189–1232, 2001.

    Google Scholar 

  46. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Mach. Learn., 29(2–3):131–163, 1997.

    Article  MATH  Google Scholar 

  47. S. Funk. Netflix update: Try this at home, 2006.

    Google Scholar 

  48. R. Ghani and A. Fano. Building recommender systems using a knowledge base of product semantics. In In 2nd International Conference on Adaptive Hypermedia and Adaptive Web Based Systems, 2002.

    Google Scholar 

  49. N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender systems using decision trees. In Proceedings of the fourth ACM international conference on Web search and data mining, pages 595–604. ACM, 2011.

    Google Scholar 

  50. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Journal Information Retrieval, 4(2):133–151, July 2001.

    Article  MATH  Google Scholar 

  51. G. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numerische Mathematik, 14(5):403–420, April 1970.

    Article  MATH  MathSciNet  Google Scholar 

  52. E. Gose, R. Johnsonbaugh, and S. Jost. Pattern Recognition and Image Analysis. Prentice Hall, 1996.

    Google Scholar 

  53. S. Guha, R. Rastogi, and K. Shim. Rock: a robust clustering algorithm for categorical attributes. In Proc. of the 15th Int’l Conf. On Data Eng., 1999.

    Google Scholar 

  54. J. A. Hartigan. Clustering Algorithms (Probability & Mathematical Statistics). John Wiley & Sons Inc, 1975.

    Google Scholar 

  55. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53, 2004.

    Article  Google Scholar 

  56. Z. Huang, D. Zeng, and H. Chen. A link analysis approach to recommendation under sparse data. In Proceedings of AMCIS 2004, 2004.

    Google Scholar 

  57. A. Isaksson, M. Wallman, H. Göransson, and M. G. Gustafsson. Cross-validation and bootstrapping are unreliable in small sample classification. Pattern Recognition Letters, 29:1960–1965, 2008.

    Article  Google Scholar 

  58. X. Jin, Y. Zhou, and B. Mobasher. A maximum entropy web recommendation system: Combining collaborative and content features. In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, pages 612–617, New York, NY, USA, 2005. ACM.

    Google Scholar 

  59. I. T. Jolliffe. Principal Component Analysis. Springer, 2002.

    Google Scholar 

  60. H. Kang and S. Yoo. Svm and collaborative filtering-based prediction of user preference for digital fashion recommendation systems. IEICE Transactions on Inf & Syst, 2007.

    Google Scholar 

  61. Y. Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation, 2009.

    Google Scholar 

  62. R. Krestel, P. Fankhauser, and W. Nejdl. Latent dirichlet allocation for tag recommendation. In Proceedings of the third ACM conference on Recommender systems, pages 61–68. ACM, 2009.

    Google Scholar 

  63. M. Kurucz, A. A. Benczur, and K. Csalogany. Methods for large scale svd with missing values. In Proceedings of KDD Cup and Workshop 2007, 2007.

    Google Scholar 

  64. N. Lathia, S. Hailes, and L. Capra. The effect of correlation coefficients on communities of recommenders. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing, pages 2000–2005, New York, NY, USA, 2008. ACM.

    Google Scholar 

  65. W. Lin and S. Alvarez. Efficient adaptive-support association rule mining for recommender systems. Data Mining and Knowledge Discovery Journal, 6(1), 2004.

    Google Scholar 

  66. M. R. McLaughlin and J. L. Herlocker. A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In Proc. of SIGIR ’04, 2004.

    Google Scholar 

  67. S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how accuracy metrics have hurt recommender systems. In CHI ’06: CHI ’06 extended abstracts on Human factors in computing systems, pages 1097–1101, New York, NY, USA, 2006. ACM Press.

    Google Scholar 

  68. K. Miyahara and M. J. Pazzani. Collaborative filtering with the simple bayesian classifier. In Pacific Rim International Conference on Artificial Intelligence, 2000.

    Google Scholar 

  69. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective personalization based on association rule discovery from web usage data. In Workshop On Web Information And Data Management, WIDM ’01, 2001.

    Google Scholar 

  70. K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

    Google Scholar 

  71. D. Nikovski and V. Kulev. Induction of compact decision trees for personalized recommendation. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pages 575–581, New York, NY, USA, 2006. ACM.

    Google Scholar 

  72. M. P. O’mahony. Detecting noise in recommender system databases. In In Proceedings of the International Conference on Intelligent User Interfaces (IUI’06), 29th–1st, pages 109–115. ACM Press, 2006.

    Google Scholar 

  73. D. Parra, A. Karatzoglou, X. Amatriain, and I. Yavuz. Implicit feedback recommendation via implicit-to-explicit ordinal logistic regression mapping. 2011.

    Google Scholar 

  74. A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In Proceedings of KDD Cup and Workshop 2007, 2007.

    Google Scholar 

  75. M. J. Pazzani. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13:393–408, 1999.

    Article  Google Scholar 

  76. M. J. Pazzani and D. Billsus. Learning and revising user profiles: The identification of interesting web sites. Machine Learning, 27(3):313–331, 1997.

    Article  Google Scholar 

  77. V. Pronk, W. Verhaegh, A. Proidl, and M. Tiemann. Incorporating user control into recommender systems based on naive bayesian classification. In RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pages 73–80, 2007.

    Google Scholar 

  78. D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, second edition, 1999.

    Google Scholar 

  79. B. K. Q. Li. Clustering approach for hybrid recommender system. In Web Intelligence 03, 2003.

    Google Scholar 

  80. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, March 1986.

    Google Scholar 

  81. T. T. R. Zhang and Y. Mao. Recommender systems from words of few mouths. In Proceedings of IJCAJ 11, 2011.

    Google Scholar 

  82. J. F. S. Zhang, Y. Ouyang and F. Makedon. Analysis of a low-dimensional linear model under recommendation attacks. In Proc. of SIGIR ’06, 2006.

    Google Scholar 

  83. R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative filtering. In Proc of ICML ’07, New York, NY, USA, 2007. ACM.

    Google Scholar 

  84. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental svd-based algorithms for highly scalable recommender systems. In 5th International Conference on Computer and Information Technology (ICCIT), 2002.

    Google Scholar 

  85. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of dimensionality reduction in recommender systems—a case study. In ACM WebKDD Workshop, 2000.

    Google Scholar 

  86. A. Schclar, A. Tsikinovsky, L. Rokach, A. Meisels, and L. Antwarg. Ensemble methods for improving the performance of neighborhood-based collaborative filtering. In RecSys ’09: Proceedings of the third ACM conference on Recommender systems, pages 261–264, New York, NY, USA, 2009. ACM.

    Google Scholar 

  87. B. Smyth, K. McCarthy, J. Reilly, D. O‘Sullivan, L. McGinty, and D. Wilson. Case studies in association rule mining for recommender systems. In Proc. of International Conference on Artificial Intelligence (ICAI ’05), 2005.

    Google Scholar 

  88. E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity measures: A large-scale study in the orkut social network. In Proceedings of the 2005 International Conference on Knowledge Discovery and Data Mining (KDD-05), 2005.

    Google Scholar 

  89. Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical dirichlet processes. Journal of the American Statistical Association, 101, 2004.

    Google Scholar 

  90. M. Tiemann and S. Pauws. Towards ensemble learning for hybrid music recommendation. In RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pages 177–178, New York, NY, USA, 2007. ACM.

    Google Scholar 

  91. A. Toescher, M. Jahrer, and R. Legenstein. Improved neighborhood-based algorithms for large-scale recommender systems. In In KDD-Cup and Workshop 08, 2008.

    Google Scholar 

  92. L. H. Ungar and D. P. Foster. Clustering methods for collaborative filtering. In Proceedings of the Workshop on Recommendation Systems, 2000.

    Google Scholar 

  93. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, second edition, 2005.

    Google Scholar 

  94. M. Wu. Collaborative filtering via ensembles of matrix factorizations. In Proceedings of KDD Cup and Workshop 2007, 2007.

    Google Scholar 

  95. Z. Xia, Y. Dong, and G. Xing. Support vector machines for collaborative filtering. In ACM-SE 44: Proceedings of the 44th annual Southeast regional conference, pages 169–174, New York, NY, USA, 2006. ACM.

    Google Scholar 

  96. J. Xu and K. Araki. A svm-based personal recommendation system for tv programs. In Multi-Media Modelling Conference Proceedings, 2006.

    Google Scholar 

  97. G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen. Scalable collaborative filtering using cluster-based smoothing. In Proceedings of the 2005 SIGIR, 2005.

    Google Scholar 

  98. K. Yu, V. Tresp, and S. Yu. A nonparametric hierarchical bayesian framework for information filtering. In SIGIR ’04, 2004.

    Google Scholar 

  99. Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation system. In SIGIR 07, 2007.

    Google Scholar 

  100. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In Proc. of WWW ’05, 2005.

    Google Scholar 

  101. J. Zurada. Introduction to artificial neural systems. West Publishing Co., St. Paul, MN, USA, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Amatriain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amatriain, X., Pujol, J.M. (2015). Data Mining Methods for Recommender Systems. In: Ricci, F., Rokach, L., Shapira, B. (eds) Recommender Systems Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7637-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7637-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7636-9

  • Online ISBN: 978-1-4899-7637-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics