Skip to main content

Starved and Nonculturable Microorganisms in Biofilms

  • Chapter

Abstract

Casual observation of most solid surfaces immersed in aqueous environments reveals the presence of a slimy layer developing on the surfaces. These slimes, termed biofilms, form on exposed surfaces as a result of bacterial adhesion to, followed by growth and exopolymer production at, the solid-liquid interface (26, 28, 60, 67). The numbers and types of bacteria per unit volume of biofilm in different environments vary considerably, depending on factors such as the nature of the substratum, the trophic level of the aqueous phase, the flow rate, and the degree of turbulence (22). The complex communities of microorganisms found in biofilms ensure that these systems play a major role in microbially catalyzed reactions in natural environments, particularly in the degradation of organic molecules and in nitrification and other mineral transformation processes. Some of the most intensively studied biofilms, in terms of their structure, biology, and biogeochemistry, are the microbial mats found in shallow submerged or intermittently exposed littoral marine areas (25, 36, 97).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, R., W. Ludwig, and K.-H. Schleifer. 1992. Identification and in situ detection of individual bacterial cells. FEMS Microbiol. Lett. 100:45–50.

    Google Scholar 

  2. Amann, R. I., J. Stromley, R. Devereux, R. Key, and D. A. Stahl. 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58:614–623.

    PubMed  CAS  Google Scholar 

  3. Amann, R. I., B. Zarda, D. A. Stahl, and K.-H. Schleifer. 1992. Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 58:3007–3011.

    PubMed  CAS  Google Scholar 

  4. Amy, P. S., and R. Y. Morita. 1983. Starvation-survival patterns of sixteen freshly isolated openocean bacteria. Appl. Environ. Microbiol. 45:1109–1115.

    PubMed  CAS  Google Scholar 

  5. Anwar, H., and J. W. Costerton. 1992. Effective use of antibiotics in the treatment of biofilmassociated infections. ASM News 58:665–668.

    Google Scholar 

  6. Anwar, H., M. K. Dasgupta, and J. W. Costerton. 1990. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob. Agents Chemother. 34:2043–2046.

    PubMed  CAS  Google Scholar 

  7. Anwar, H., J. L. Strap, and J. W. Costerton. 1992. Establishment of aging biofilms: possible mechanism of bacterial resistance to antibiotic therapy. Antimicrob. Agents Chemother. 36:1347–1351.

    PubMed  CAS  Google Scholar 

  8. Baier, R. E. 1980. Substrata influences on adhesion of microorganisms and their resultant new surface properties, p. 59–104. In G. Bitton and K. C. Marshall (ed.), Adsorption of Microorganisms to Surfaces. Wiley-Interscience, New York, N.Y.

    Google Scholar 

  9. Barer, M. R., L. T. Gribbon, C. R. Harwood, and C. E. Nwoguh. 1993. The viable but nonculturable hypothesis and medical bacteriology. Rev. Med. Microbiol. 4:183–191.

    Article  Google Scholar 

  10. Bej, A. K., M. H. Mahbubani, and R. M. Atlas. 1991. Detection of viable Legionella pneuophila in water by polymerase chain reaction and gene probe methods. Appl. Environ. Microbiol. 57:597–600.

    PubMed  CAS  Google Scholar 

  11. Belas, R., A. Mileham, M. Simon, and M. Silverman. 1984. Transposon mutagenesis of marine Vibrio spp. J. Bacteriol. 158:890–896.

    PubMed  CAS  Google Scholar 

  12. Belas, R., M. Simon, and M. Silverman. 1986. Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J. Bacteriol. 167:210–218.

    PubMed  CAS  Google Scholar 

  13. Berkeley, R. C. W., J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent (ed.). 1980. Microbial Adhesion to Surfaces. Ellis Horwood Publ., Chichester, U.K.

    Google Scholar 

  14. Blenkinsopp, S. A., A. E. Khoury, and J. W. Costerton. 1992. Electrical enhancement of biocide efficacy against Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 58:3770–3773.

    PubMed  CAS  Google Scholar 

  15. Brown, M. R. W., D. G. Allison, and P. Gilbert. 1988. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J. Antimicrob. Chemother. 22:777–783.

    Article  PubMed  CAS  Google Scholar 

  16. Bryers, J. D. 1990. Biofilms in biotechnology, p. 733–773. In W. G. Characklis and K. C. Marshall (ed.), Biofilms. Wiley-Interscience, New York, N.Y.

    Google Scholar 

  17. Caldwell, D. E., S. H. Lai, and J. M. Tiedje. 1973. A two-dimensional steady-state diffusion gradient for ecological studies. Bull. Ecol. Res. Comm.-NFR (Statens Naturvetensk, Forskningsrad, Sweden) 17:151–158.

    Google Scholar 

  18. Caldwell, D. E., D. R. Korber, and J. R. Lawrence. 1992. Confocal laser microscopy and computer image analysis in microbial ecology. Adv. Microb. Ecol. 12:1–67.

    Article  CAS  Google Scholar 

  19. Cargill, K. L., B. H. Pyle, R. L. Sauer, and G. A. McFeters. 1992. Effects of culture conditions and biofilm formation on the iodine susceptibility of Legionella pneumophila. Can. J. Microbiol. 38:423–429.

    Article  PubMed  CAS  Google Scholar 

  20. Chang, C. C., and K. Merritt. 1992. Microbial adherence on poly(methyl methacrylate) (PMMA) surfaces. J. Biomed. Mater. Res. 26:197–207.

    Article  PubMed  CAS  Google Scholar 

  21. Characklis, W. G. 1990. Microbial biofouling control, p. 585–633. In W. G. Characklis and K. C. Marshall (ed.), Biofilms. Wiley-Interscience, New York, N.Y.

    Google Scholar 

  22. Characklis, W. G., and K. C. Marshall (ed.). 1990. Biofilms. Wiley-Interscience, New York, N.Y.

    Google Scholar 

  23. Characklis, W. G., M. H. Turakia, and N. Zelver. 1990. Transport and interfacial transfer phenomena, p. 265–340. In W. G. Characklis and K. C. Marshall (ed.), Biofilms. Wiley-Interscience, New York, N.Y.

    Google Scholar 

  24. Characklis, W. G., G. A. McFeters, and K. C. Marshall. 1990. Physiological ecology in biofilm systems, p. 341–394. In W. G. Characklis and K. C. Marshall (ed.), Biofilms. Wiley-Interscience, New York, N.Y

    Google Scholar 

  25. Cohen, Y., and E. Rosenberg (ed.). 1989. Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  26. Costerton, J. W., K.-J. Cheng, G. G. Geesey, T. Ladd, J. C. Nickel, M. Dasgupta, and T. J. Marrie. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41:435–464.

    Article  PubMed  CAS  Google Scholar 

  27. Costerton, J. W., Z. Lewandowski, D. DeBeer, D. Caldwell, D. Korber, and G. James. 1994. Biofilms, the customized microniche. J. Bacteriol. 176:2137–2142.

    PubMed  CAS  Google Scholar 

  28. Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711–745.

    Article  PubMed  CAS  Google Scholar 

  29. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322.

    Article  PubMed  CAS  Google Scholar 

  30. Dagostino, L., A. E. Goodman, and K. C. Marshall. 1991. Physiological responses induced in bacteria adhering to surfaces. Biofouling 4:113–119.

    Article  Google Scholar 

  31. Dalsgaard, T., and N. P. Revsbech. 1992. Regulating factors of dentrification in trickling filter biofilms as measured with the oxygen/nitrous oxide microsensor. FEMS Microbial Ecol. 101:151–164.

    CAS  Google Scholar 

  32. Davies, D. G., A. M. Chakrabarty, and G. G. Geesey. 1993. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 59:1181–1186.

    PubMed  CAS  Google Scholar 

  33. Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298.

    Article  PubMed  CAS  Google Scholar 

  34. de Beer, D., J. C. van den Heuvel, and S. P. P. Ottengraf. 1993. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Appl. Environ. Microbiol. 59:573–579.

    PubMed  Google Scholar 

  35. de Beer, D., P. Stoodley, F. Roe, and Z. Lewandowski. 1994. Effects of biofilm structures on oxygen distribution and mass transfer. Biotechnol. Bioeng. 43:1131–1138.

    Article  PubMed  Google Scholar 

  36. de Beer, D., P. Stoodley, and Z. Lewandowski. 1997. Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol. Bioeng. 53:151–158.

    Article  PubMed  Google Scholar 

  37. de Weger, L. A., P. Dunbar, W. F. Mahafee, B. J. J. Lugtenberg, and G. S. Sayler. 1991. Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Appl. Environ. Microbiol. 57:3641–3644.

    PubMed  Google Scholar 

  38. Evans, D. J., M. R. W. Brown, D. G. Allison, and P. Gilbert. 1991. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J. Antimicrob. Chemother. 27:177–184.

    Article  PubMed  CAS  Google Scholar 

  39. Ford, T., and R. Mitchell. 1990. The ecology of microbial corrosion. Adv. Microb. Ecol. 11:231–262.

    Article  CAS  Google Scholar 

  40. Gerchakov, S. M., D. S. Marszalek, F. J. Roth, and L. R. Udey. 1977. Succession of periphytic microorganisms on metal and glass surfaces, p. 203–211. In V. Romanovsky (ed.), Proc. 4th Intern. Congr. Mar Corrosion Fouling. Centre de Recherches et d’Etudes Oceanographiques, Boulogne, France.

    Google Scholar 

  41. Gest, H. 1993. Bacterial growth and reproduction in nature and in the laboratory. ASM News. 59: 542–543.

    Google Scholar 

  42. Gilbert, P., F. Collier, and M. R. W. Brown. 1990. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob. Agents Chemother. 34:1865–1868.

    PubMed  CAS  Google Scholar 

  43. Goodman, A. E., and K. C. Marshall. 1995. Genetic responses of bacteria at surfaces, p. 80–98. In H. M. Lappin-Scott and J. W. Costerton (ed.), Microbial Biofilms. Cambridge University Press, Cambridge, U.K.

    Chapter  Google Scholar 

  44. Griffith, P. C., and M. Fletcher. 1991. Hydrolysis of protein and model dipeptide substrates by attached and unattached marine Pseudomonas sp. strain NCMB 2021. Appl. Environ. Microbiol. 57: 2186–2191.

    PubMed  CAS  Google Scholar 

  45. Gristina, A. G., J. J. Dobbins, M. S. Giammara, J. C. Lewis, and W. C. DeVries. 1988. Biomaterial-centered sepsis and the total artificial heart. JAMA 259:870–874.

    Article  PubMed  CAS  Google Scholar 

  46. Hermansson, M., and K. C. Marshall. 1985. Utilization of surface localized substrate by nonadhesive marine bacteria. Microbiol. Ecol. 11:91–105.

    Article  CAS  Google Scholar 

  47. Herrick, J. B., E. L. Madsen, C. A. Batt, and W. C. Ghiorse. 1993. Polymerase chain reaction amplification of naphthalenecatabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl. Environ. Microbiol. 59:687–694.

    PubMed  CAS  Google Scholar 

  48. Holben, W. E., B. M. Schroter, V. G. Calabrese, R. H. Olsen, J. K. Kukor, V. O. Biederbeck, A. E. Smith, and J. M. Tiedje. 1992. Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophen-oxyacetic acid. Appl. Environ. Microbiol. 58:3941–3948.

    PubMed  CAS  Google Scholar 

  49. Hoyle, B. D., L. J. Williams, and J. W. Costerton. 1993. Production of mucoid exopolysaccharide during development of Pseudomonas aeruginosa biofilms. Infect. Immun. 61:777–780.

    PubMed  CAS  Google Scholar 

  50. Kane, M. D., L. K. Poulsen, and D. A. Stahl. 1993. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl. Environ. Microbiol. 59:682–686.

    PubMed  CAS  Google Scholar 

  51. Kefford, B., S. Kjelleberg, and K. C. Marshall. 1982. Bacterial scavenging: Utilization of fatty acids localized at a solid-liquid interface. Arch. Microbiol. 133:257–260.

    Article  CAS  Google Scholar 

  52. King, J. M. H., P. M. Digrazia, B. Applegate, R. Burlage, J. Sanseverino, P. Dunbar, F. Larimer, and G. S. Sayler. 1990. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781.

    Article  PubMed  CAS  Google Scholar 

  53. Kinniment, S. L., and J. W. T. Wimpenny. 1992. Measurements of the distribution of adenylate concentrations and adenylate energy charge across Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 58:1629–1635.

    PubMed  CAS  Google Scholar 

  54. Kjelleberg, S. 1993. Starvation in Bacteria. Plenum Press, New York, N.Y.

    Google Scholar 

  55. Kjelleberg, S., B. A. Humphrey, B. A. Marshall, and K. C. Marshall. 1982. The effect of interfaces on small starved marine bacteria. Appl. Environ. Microbiol. 43:1166–1172.

    PubMed  CAS  Google Scholar 

  56. Kjelleberg, S., M. Hermansson, P. Mardén, and G. W. Jones. 1987. The transient phase between growth and non-growth of heterotrophic bacteria, with emphasis on the marine environment. Annu. Rev. Microbiol. 41:25–49.

    Article  PubMed  CAS  Google Scholar 

  57. Koch, A. L. 1990. Diffusion: The crucial process in many aspects of the biology of bacteria. Adv. Microb. Ecol. 11:37–70.

    Article  Google Scholar 

  58. Kolenbrander, P. E., and J. London. 1992. Ecological significance of coaggregation among oral bacteria. Adv. Microb. Ecol. 12:183–217.

    Article  Google Scholar 

  59. Korber, D. R., J. R. Lawrence, H. M. Lappin-Scott, and J. W. Costerton. 1995. Growth of microorganisms on surfaces, p. 15–45. In H. M. Lappin-Scott and J. W. Costerton (ed.), Microbial Biofilms. Cambridge University Press, Cambridge, U.K.

    Chapter  Google Scholar 

  60. Lappin-Scott, H. M., and J. W. Costerton (ed.). 1995. Microbial Biofilms. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  61. Lawrence, J. R., D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173:6558–6567.

    PubMed  CAS  Google Scholar 

  62. Lee, A. 1985. Neglected niches: the microbial ecology of the gastrointestinal tract. Adv. Microb. Ecol., 8:115–162.

    Article  Google Scholar 

  63. Leung, J. W., G. T. Lau, J. J. Sung, and J. W. Costerton. 1992. Decreased bacterial adherence to silver-coated stent material: an in vitro study. Gastrointest. Endosc. 38:338–340.

    Article  PubMed  CAS  Google Scholar 

  64. Little, B., P. Wagner, R. Ray, R. Pope, and R. Scheetz. 1991. Biofilms: an ESEM evaluation of artifacts introduced during SEM preparation. J. Indust. Microbiol. 8:213–222.

    Article  CAS  Google Scholar 

  65. Maki, J. S., D. Rittschof, D. Mitchell, and R. Mitchell. 1992. Inhibition of larval barnacle attachment to bacterial films: an investigation of physical properties. Microb. Ecol. 23:97–106.

    Article  Google Scholar 

  66. Manz, W., U. Szewzyk, P. Ericsson, R. Amann, K.-H. Schleifer, and T.-A. Stenstrom. 1993. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleode probes. Appl. Environ. Microbiol. 59:2293–2298.

    PubMed  CAS  Google Scholar 

  67. Marshall, K. C. 1976. Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  68. Marshall, K. C. 1984. Microbial Adhesion and Aggregation. Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  69. Marshall, K. C. 1992. Planktonic versus sessile life of prokaryotes, p. 262–275. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schliefer (ed.), The Prokaryotes, a Handbook on the Biology of Bacteria, Ecophxsiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y.

    Google Scholar 

  70. Marshall, K. C. 1992. Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News 58:202–207.

    Google Scholar 

  71. Marshall, K. C. 1993. Microbial ecology: whither goest thou?, p. 5–8. In R. Guerrero and C. Pedrós-Alió (ed.), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona, Spain.

    Google Scholar 

  72. Marszalek, D. S., S. M. Gerchakov, and L. R. Udey. 1979. Influence of substrate composition on marine microfouling. Appl. Environ. Microbiol. 38:987–995.

    PubMed  CAS  Google Scholar 

  73. McFeters, G. A. 1990. Enumeration, occurrence, and significance of injured indicator bacteria in drinking water, p. 478–492. In G. A. McFeters (ed.), Drinking Water Microbiology, Progress and Recent Development. Springer-Verlag, New York, N.Y.

    Chapter  Google Scholar 

  74. Mitchell, J. G., R. Weller, M. Beconi, J. Sell, J. Sell and J. Holland. 1993. A practical optical trap for manipulating and isolating bacteria from complex microbial communities. Microb. Ecol. 25:113–119.

    Article  Google Scholar 

  75. Morita, R. Y. 1982. Starvation-survival of heterotrophs in the marine environment. Adv. Microb. Ecol. 6:171–198.

    Article  Google Scholar 

  76. Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.

    PubMed  CAS  Google Scholar 

  77. Nealson, K. H., B. Wimpee, and C. Wimpee. 1993. Identification of Vibrio splendidus as a member of the planktonic luminous bacteria from the Persian Gulf and Kuwait region with luxA probes. Appl. Environ. Microbiol. 59:2684–2689.

    PubMed  CAS  Google Scholar 

  78. Neihof, R., and G. Loeb. 1974. Dissolved organic matter in seawater and the electric charge of immersed surfaces. J. Mar. Res. 32:5–12.

    CAS  Google Scholar 

  79. Nichols, W. W., M. J. Evans, M. P. E. Slack, and H. L. Walmsley. 1989. The penetration of antibiotics into aggregates of mucoid and nonmucoid Pseudomonas aeruginosa. J. Gen. Microbiol. 135:1291–1303.

    PubMed  CAS  Google Scholar 

  80. Nickel, J. C., I. Ruseska, J. B. Wright, and J. W. Costerton. 1985. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27:619–624.

    PubMed  CAS  Google Scholar 

  81. Nilsson, L., J. D. Oliver, and S. Kjelleberg. 1991. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J. Bacteriol. 173:5054–5059.

    PubMed  CAS  Google Scholar 

  82. Oliver, J. D. 1993. Formation of viable but nonculturable cells, p. 239–272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.

    Google Scholar 

  83. Oliver, J. D., L. Nilsson, and S. Kjelleberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl. Environ. Microbiol. 57:2640–2644.

    PubMed  CAS  Google Scholar 

  84. Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol. 9:1–55.

    CAS  Google Scholar 

  85. Poulsen, L. K., G. Ballard, and D. A. Stahl. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59:1354–1360.

    PubMed  CAS  Google Scholar 

  86. Power, K., and K. C. Marshall. 1988. Cellular growth and reproduction of marine bacteria on surface bound substrate. Biofouling 1:163–174.

    Article  Google Scholar 

  87. Revsbech, N. P. and B. B. Jorgensen. 1986. Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9:293–352.

    Google Scholar 

  88. Rodriquez, G. G., D. Phipps, K. Ishiguro, and H. F. Ridgway. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ, Microbiol. 58:1801–1808.

    Google Scholar 

  89. Rogers, J., and C. W. Keevil. 1992. Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential contrast microscopy. Appl. Environ. Microbiol. 58:2326–2330.

    PubMed  CAS  Google Scholar 

  90. Roslev, P., and G. M. King. 1993. Application of a tetrazolium salt with a water-soluble formazan as an indicator of viability in respiring bacteria. Appl. Environ. Microbiol. 59:2891–2896.

    PubMed  CAS  Google Scholar 

  91. Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.

    PubMed  CAS  Google Scholar 

  92. Samuelsson, M.-O., and D. L. Kirchman. 1991. Degradation of adsorbed protein by attached bacteria in relation to surface hydrophobicity. Appl. Environ. Microbiol. 56:3643–3648.

    Google Scholar 

  93. Savage, D. C., and M. Fletcher. 1985. Bacteria Adhesion: Mechanisms and Physiological Significance. Plenum Press, New York, N.Y.

    Google Scholar 

  94. Schaule, G., H.-C. Flemming, and H. F. Ridgway. 1993. Use of 5-cyano-2, 3-ditoyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl. Environ. Microbiol. 59:3850–3857.

    PubMed  CAS  Google Scholar 

  95. Schneider, R. P., and K. C. Marshall. 1994. Retention of the Gram-negative marine bacterium SW8 on surfaces—effects of microbial physiology, substratum nature and conditioning films. Colloids & Surfaces, B: Biointerfaces 2:387–396.

    Article  CAS  Google Scholar 

  96. Silcock, D. J., R. N. Waterhouse, L. A. Glover, J. I. Prosser, and K. Killham. 1992. Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy. Appl. Environ. Microbiol. 58:2444–2448.

    PubMed  CAS  Google Scholar 

  97. Skyring, G. W., and J. Bauld. 1990. Microbial mats in Australian coastal environments. Adv. Microb. Ecol. 11:461–498.

    Article  CAS  Google Scholar 

  98. Smigielski, A. J., B. J. Wallace, and K. C. Marshall. 1989. Changes in membrane functions during short-term starvation of Vibrio fluvialis strain NCTC 11328. Arch. Microbiol. 151:336–347.

    Article  CAS  Google Scholar 

  99. Stewart, P. S., B. M. Peyton, W. J. Drury, and R. Murga. 1993. Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 59:327–329.

    PubMed  CAS  Google Scholar 

  100. Stewart, P. S., T. Griebe, R. Srinivasan, C.-I. Chen, F. P. Yu, D. deBeer, and G. A. McFeters. 1994. Comparison of respiratory activity and culturability during monochloramine disinfection of binary population biofilms. Appl. Environ. Microbiol. 60:1690–1692.

    PubMed  CAS  Google Scholar 

  101. Stewart, P. S. 1996. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. Agents Chemother. 40:2517–2522.

    PubMed  CAS  Google Scholar 

  102. Stoodley, P., Z. Lewandowski, J. D. Boyle, and H. M. Lappin-Scott. 1998. Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol. Bioeng. 57:536–544.

    Article  PubMed  CAS  Google Scholar 

  103. Stoodley, P., I. Dodds, Z. Lewandowski, A. B. Cunningham, J. D. Boyle, and H. M. Lappin-Scott. 1999. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85: 19S–28S.

    Article  Google Scholar 

  104. Szewzyk, U., W. Manz, R. Amann, K.-H. Schleifer, and T.-A. Stenstrom. 1994. Growth and in situ detection of a pathogenic Escherichia coli in biofilms of a heterotrophic water bacterium by use of 16S-and 23S-rRNA-directed fluorescent oligonucleotide probes. FEMS Microbiol. Ecol. 13: 169–176.

    Article  CAS  Google Scholar 

  105. Tabor, P. S., and R. A. Neihof. 1982. Improved method for determination of respiring individual microorganisms in natural waters. Appl. Environ. Microbiol. 43:1249–1255.

    PubMed  CAS  Google Scholar 

  106. ten Bosch, J. J. 1991. Physico-chemical aspects of biological adhesion. Biofouling 4(1–3): 1–247.

    Article  Google Scholar 

  107. Terzieva, S., J. Donnelly, V. Ulevicius, S. A. Grinshpun, K. Willeke, G. N. Selma, and K. P. Brenner. 1996. Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Appl. Environ. Microbiol. 62:2264–2272.

    PubMed  CAS  Google Scholar 

  108. Tyler, P. A., and K. C. Marshall. 1967. Microbial oxidation of manganese in hydro-electric pipelines. Antonie van Leeuwenhoek 33:171–183.

    Article  PubMed  CAS  Google Scholar 

  109. Wagner, M., R. Amann, H. Lemmer, and K.-H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59:1520–1525.

    PubMed  CAS  Google Scholar 

  110. Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65.

    Article  PubMed  CAS  Google Scholar 

  111. Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community. FEMS Microbiol. Rev. 75:105–116.

    Article  CAS  Google Scholar 

  112. Ward, D. M., M. M. Bateson, R. Weller, and A. L. Ruff-Roberts. 1992. Ribosomal RNA analysis of microorganisms as they occur in nature. Adv. Microb. Ecol. 12:219–286.

    Article  CAS  Google Scholar 

  113. Weichart, D., J. D. Oliver, and S. Kjelleberg. 1992. Low temperature induced nonculturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100:205–210.

    Google Scholar 

  114. Weller, R., M. M. Bateson, B. K. Heimbuch, E. D. Kopczynski, and D. M. Ward. 1992. Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl. Environ. Microbiol. 58:3964–3969.

    PubMed  CAS  Google Scholar 

  115. Wolfaardt, G. M., J. R. Lawrence, M. J. Hendry, R. D. Robarts, and D. E. Caldwell. 1993. Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia. Appl. Environ. Microbiol. 59:2388–2396.

    PubMed  CAS  Google Scholar 

  116. Yu, F. P. and G. A. McFeters. 1994. Rapid in situ assessment of physiological activities in biofilms using fluorescent probes. J. Microbiol. Methods 20:1–10.

    Article  PubMed  CAS  Google Scholar 

  117. Zimmerman, R., R. Iturriaga, and J. Becker-Birck. 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36:926–935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 ASM Press, Washington, D.C.

About this chapter

Cite this chapter

Marshall, K.C. (2000). Starved and Nonculturable Microorganisms in Biofilms. In: Colwell, R.R., Grimes, D.J. (eds) Nonculturable Microorganisms in the Environment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0271-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0271-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0273-6

  • Online ISBN: 978-1-4757-0271-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics