Skip to main content

Short Chain Fatty Acids, Intestinal Adaptation, and Nutrient Utilization

  • Chapter
Dietary Fiber in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 427))

Abstract

The gut, composed of epithelial cells, gut associated immune cells, and smooth muscle cells, is a highly dynamic organ recognized for its role in nutrient absorption and the exclusion of foreign substances, ie gut barrier function. Less well understood is its influence on the utilization of nutrients even though > 50% of the post-prandial insulin response is mediated by gut-secreted peptides (the “incretin” effect)1,2. Thus, a consideration of the effect of dietary fiber on nutrient utilization must consider two domains: 1) the requirement of the gut for nutrients per se and 2) the secretion of peptides from the gut to potentially influence nutrient utilization in other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McIntyre, N., Holdsworth, C.D. and Turner, D.S. 1964. New interpretation of oral glucose tolerance. Lancet 2:20–21.

    Article  CAS  Google Scholar 

  2. Hampton, S.M., Morgan, L.M., Tredger, J.A. and Marks, V. 1986. Insulin and C-peptide levels after oral and intravenous glucose: contribution of enteroinsular axis to insulin secretion. N. Engl. J. Med. 35:612–616.

    CAS  Google Scholar 

  3. Weinstein, W.M. 1974. Epithelial cell renewal of the small intestinal mucosa. Med. Clin. N. Am. 58:1375–1386.

    CAS  Google Scholar 

  4. Altmann, G.G. and Enesco, M. 1967. Cell number as measure of distribution and renewal of epithelial cells in the small intestine of growing and adult rats. Am. J. Anat. 121:19–336.

    Article  Google Scholar 

  5. Holliday, M.A. 1971. Metabolic rate and organ size during growth from infancy to maturity and during late gestation and early infancy. Pediatrics 47:169–179.

    Google Scholar 

  6. Yen, J.T., Nienaber, J.A., Hill, D.A. and Pond, W.G. 1989. Oxygen consumption of portal vein-drained organs and by whole animal in conscious growing swine. Proc. Soc. Exp. Biol. Med. 190:393–398.

    CAS  Google Scholar 

  7. McNurlan, M.A. and Garlick, P.J. 1980. Contribution of rat liver and gastrointestinal tract to whole-body protein synthesis in the rat. Biochem. J. 186:381–383.

    CAS  Google Scholar 

  8. McNurlan, M.A., Tomkins, A.M. and Garlick, P.J. 1979. The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem. J. 1787:373–379.

    Google Scholar 

  9. McBurney, M.I. 1993. The gut: central organ in nutrient requirements and metabolism. Can. J. Physiol. Pharmacol. 72:260–265.

    Article  Google Scholar 

  10. Ferraris, R.P. and Diamond, J. 1992. Crypt-villus site of glucose transporter induction by dietary carbohydrate in mouse intestine. Am. J. Physiol. 262:G1069–1073.

    CAS  Google Scholar 

  11. Miyamoto, K., Base, K., Takagi, T., Fujii, T., Taketani, Y., Minami, H., Oka, T. and Nakabou, Y. 1993. Differential responses of intestinal glucose transporter mRNA transcripts to levels of dietary sugars. Biochem. J. 295:211–215.

    CAS  Google Scholar 

  12. Hopper, A.F., Wannemacher, R.W. and McGovern, P.A. 1968. Cell population changes in the intestinal epithelium of the rat following starvation and protein depletion. Proc. Soc. Fxp. Biol. Med. 128:695–698.

    CAS  Google Scholar 

  13. Brown, H.O., Levine, M.L. and Lipkin, M. 1963. Inhibition of intestinal epithelial cell renewal and migration induced starvation. Am. J. Physiol. 205:868–872.

    CAS  Google Scholar 

  14. Preddy, V.R., Pasaka, L., Sugden, P.H., Schofield, P.S. and Sugden, M.C. 1988. The effects of surgical stress and short-term fasting on protein synthesis in vivo in diverse tissues of the mature rat. Biochem. J. 250:179–188.

    Google Scholar 

  15. Emery, P.W., Cotellessa, L., Holness, M., Egan, C. and Rennie, M.J. 1986. Different patterns of protein turnover in skeletal muscle and gastrointestinal smooth muscle and the productionof N-methylhistidine during fasting in the rat. J. Biosci. Rep. 6:143–153.

    Article  CAS  Google Scholar 

  16. Janne, P. Carpenter, Y. and Wellems, G. 1977. Colonic mucosal atrophy induced by a liquid elemental diet in rats. Am. J. Dig. Dis. 22:808–812.

    CAS  Google Scholar 

  17. Maxton, D.G., Cynk, E.U. and Thompson, R.P.H. 1987. Small intestinal response to “elemental” and “complete” liquid feeds in the rat: effect of dietary bulk. Gut. 28: 688–693.

    Article  CAS  Google Scholar 

  18. Jones, W.G., Minei, J.P., Barber, A.E., Moldawer, L.L., Fahey III, T.J., Shires III, G.T., Lowry, S.F. and Shires, G.T. 1989. Elemental diet promotes spontaneous bacterial translocation and alters mortality after endotoxin challenge. J. Surg. Res. 47:129–133.

    Article  Google Scholar 

  19. Castillo, R.O., Pittler, A. and Costa, F. 1988. Intestinal maturation in the rat: the role of enteral nutrients. JPEN 12:490–495.

    Article  CAS  Google Scholar 

  20. Hosada, N., Nishi, M., Nakagawa, M., Hiramatsu, Y., Hioki, K. and Yamamoto, M. 1989. Structural and functional alterations in the gut of parenterally and enterally fed rats. J. Surg. Res. 47:129–133.

    Article  Google Scholar 

  21. Goodlad, R.A., Lenton, W., Ghatei, M.A., Adrian, T.E., Bloom, S.R. and Wright, N.A. 1987. Effects of an elemental diet, inert bulk and different types of dietary fiber on the response of the intestinal epithelium to refeeding in the rat and relationship to plasma gastrin, enteroglucagon, and PYY concentrations. Gut 28:171–180.

    Article  CAS  Google Scholar 

  22. Jacobs, L.R. & Lupton, J.R. 1984. Effect of dietary fibers on rat large bowel mucosal growth and cell proliferation. Am. J. Physiol. 246:G378–385.

    CAS  Google Scholar 

  23. Kripke, S.A., Fox, A.D., Berman, J.J., Settle, R.G. and Rombeau, J.L. 1989. Stimulation of intestinal mucosal growth with intracolonic infusion of short-chain fatty acids. JPEN 13:109–116.

    Article  CAS  Google Scholar 

  24. Sakata, T. and von Engelhardt, W. 1983. Stimulatory effect of short chain fatty acids on the epithelial proliferation in rat large intestine. Corp. Biochem. Physiol. 74A:459–462.

    CAS  Google Scholar 

  25. Sakata, T. 1987. Stimulatory effects of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal factors. Br. J. Nutr. 58:95–103.

    Article  CAS  Google Scholar 

  26. Lupton, J.R. and Kurtz, P.P. 1993. Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. J. Nutr. 123:1522–1530.

    CAS  Google Scholar 

  27. Koruda, M.J., Rolandelli, R.H., Settle, R.G., Zimmaro, D.M. and Rombeau, J.L. 1988. Effect of parenteral nutrition supplemented with short chain fatty acids on adaptation to massive small bowel resection. Gastroenterol. 95:715–720.

    CAS  Google Scholar 

  28. Tappenden, K.A., Thomson, A.B.R., Wild, G.E. and McBurney, M.I. 1996. Short-chain fatty acids increase proglucagon and omithine decarboxylase messenger RNAs after intestinal resection in rats. JPEN. In press.

    Google Scholar 

  29. Report of the Expert Advisory Committee on Dietary Fibre. 1985. Minister of National Health and Welfare, Health Protection Branch, Health and Welfare, Ottawa, Canada.

    Google Scholar 

  30. American Dietetic Association. 1988. Health implications of dietary fiber. J. Am. Diet. Assoc. 88:216–222.

    Google Scholar 

  31. U.S. Department of Health and National Services. 1988. The Surgeon General’s Report on Nutrition and Health. 1988. DC:U.S. Government Printing Office. DHHS Publ. No. 88:50211.

    Google Scholar 

  32. Van Soest, P.J. Nutritional Ecology of the Ruminant. 1982. O & B Books Inc., Corvallis, OR.

    Google Scholar 

  33. Williams, R.D. and Olmstead, W.H. 1936. The effect of cellulose, hemicellulose and lignin on the weight of the stool: a contribution to the study of laxation in man. J. Nutr. 11:433–449.

    CAS  Google Scholar 

  34. Cleave, T.L. 1956. The neglect of natural principles in current medical practice. J. R. Nay. Med. Serv. 42:55–82.

    Google Scholar 

  35. Burkitt, D.P. 1973. Some diseases characteristic of modem Western civilization. Br. Med. J. 1:274–278.

    Article  CAS  Google Scholar 

  36. Trowell, H. 1976. Definition of dietary fiber and hypothesis that it is a protective factor in certain diseases. Am. J. Clin. Nutr. 29:417–427.

    CAS  Google Scholar 

  37. Spiller, G.A. 1993. CRC Handbook of Dietary Fiber in Human Nutrition. 2nd ed., CRC Press Inc, Boca Raton, FL.

    Google Scholar 

  38. Chapman, R.W., Sillery, J.K., Graham, M.M. and Saunders, D.R. 1985. Absorption of starch by healthy ileostomates: effect of transit time and of carbohydrate load. Am. J. Clin. Nutr. 41:1244–1248.

    CAS  Google Scholar 

  39. Stephen, A.M., Wiggans, H.S. and Cummings, J.H. 1987. Effect of changing transit time on colonic microbial metabolism in man. Gut 28:601–609.

    Article  CAS  Google Scholar 

  40. Layer, P., Zinsmeister, A.R. and DiMagno, E.P. 1986. Effects of decreasing intraluminal amylase activity on starch digestion and postprandial gastrointestinal function in humans. Gastroenterol. 91:41–48.

    CAS  Google Scholar 

  41. Jain, N.K., Boivin, M., Zinsmeister, A.R., Brown, M.L., Malagelada, J.-R., and DiMagno, E.P. 1989. Effect of ileal perfusion of carbohydrates and amylase inhibitor on gastrointestinal hormones and emptying. Gastroenterol. 96:377–387.

    CAS  Google Scholar 

  42. McBurney, M.I. 1991. Starch malabsorption and stool excretion are influenced by the menstrual cycle in women consuming low-fibre western diets. Scand. J. Gastroenterol. 26:880–886.

    CAS  Google Scholar 

  43. Demment, M.W. and Van Soest, P.J. 1985. A nutritional explanation for body-size patterns of ruminant and non-ruminant herbivores. Am. Naturalist 125:640–672.

    Google Scholar 

  44. McBurney, M.I. and Sauer, W.C. 1992. Fiber and large bowel energy absorption: validation of the integrated ileostomy-fermentation model using pigs. J. Nutr. 123:721–727.

    Google Scholar 

  45. Milton, K. and Demment, M.W. 1988. Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. J. Nutr. 118:1082–1088.

    CAS  Google Scholar 

  46. McBurney, M.I., Allen, M.S. and Van Soest, P.J. 1986. Praseodynium and copper cation-exchange capacities of neutral-detergent fibres relative to composition and fermentation kinetics..1. Sci. Food Chem. 37:666–672.

    CAS  Google Scholar 

  47. McBurney, Ml. and Thompson, L.U. 1987. Effect of human faecal inoculum on in vitro fermentation variables. Br. J. Nutr. 58:233–243.

    Article  CAS  Google Scholar 

  48. McBurney, MI. and Thompson, L.U. 1990. Fermentative characteristics of cereal brans and vegetable fibers. Nutr. Cancer 13:271–280.

    CAS  Google Scholar 

  49. McBurney, M.I. and Thompson, L.U. 1991. Dietary fiber and total enteral nutrition: fermentative assessment of five fiber supplements. J.P.E.N. 15:267–270.

    CAS  Google Scholar 

  50. McBurney, M.I. and Van Soest, P.J. 1991. Structure-function relationships: lessons from other species. In: The Large intestine: Physiology, Pathophysiology, and Disease. (Phillips, S.F., Pemberton, J.H. and Shorter, R.G., ed.). Raven Press: New York, pp. 37–50.

    Google Scholar 

  51. McBurney, M.I. and Thompson, L.U. 1989. Dietary fiber and energy balance: integration of the human ileostomy and in vitro fermentation models. Anim. Feed Sci. Technol. 23:261–275.

    Google Scholar 

  52. Frankel, W.L., Zhang, W., Singh, A., Klurfeld, D.M., Don, S., Sakata, T., Modlin, I.. and Rombeau, J.L. 1994. Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterol. 106:375–80.

    CAS  Google Scholar 

  53. Marsman, K.E. and McBurney, M.I. 1995. Dietary fiber increases oxidative metabolism in colonocytes but not in distal small intestinal enterocytes isolated from rats. J. Nutr. 125:273–282.

    CAS  Google Scholar 

  54. Marsman, K.E. and McBurney, M.I. 1996. Influence of dietary fiber consumption on oxidative metabolism and anaplerotic flux in isolated rat colonocytes. Corp. Biochem. Physiol. In press.

    Google Scholar 

  55. Darcy-Vrillon, B., Morel, M.-T., Cherbuy, C., Bernard, F., Posho, L., Blachier, F., Meslin, J.-C. and Duee, P.-H. 1993. Metabolic characteristics of pig colonocytes after adaptation to a high fiber diet..1. Nutr. 123:234–243.

    CAS  Google Scholar 

  56. Clausen, M.R. and Mortensen, P.B. 1994. Kinetic studies on the metabolism of short-chain fatty acids and glucose by isolated rat colonocytes. Gastroenterol. 106:423–432.

    CAS  Google Scholar 

  57. Marsman, K.E. and McBurney, M.I. 1996. Dietary fiber and short-chain fatty acids affect cell proliferation and protein synthesis in isolated rat colonocytes. J. Nutr. 126:1429–1437.

    CAS  Google Scholar 

  58. Roediger, W.E.W. 1980. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet ii:712–715.

    Google Scholar 

  59. Hang, J.M., Soergel, K.H., Komorowski, R.A. and Wood, C.M. 1989. Treatment of diversion colitis with short-chain-fatty acid irrigation. N. Engl. J. Med. 320:23–28.

    Article  Google Scholar 

  60. Bingham, S.A. 1990. Mechanism and experimental epidemiological evidence relating dietary fibre (non-starch polysaccharides) and starch to protection against large bowel cancer. Proc. Nutr. Soc. 49:153–171.

    CAS  Google Scholar 

  61. Reddy, B.S. 1995. Nutritional factors and colon cancer. Crit. Rev. Food Sci. and Nutr. 35:175–190.

    Article  CAS  Google Scholar 

  62. Mortensen, P.B. and Clausen, M.R. 1996. Short chain fatty acids in the human colon: Relation to gastrointestinal health and disease. Scand. J. Gastroenterol. 31:132–148.

    Article  CAS  Google Scholar 

  63. Koruda, M.J., Rolandelli, R.H., Settle, R.G., Saul, S.H. and Rombeau, J.L. 1986. The effect of a pectin-supplemented elemental diet on intestinal adaptation to massive small bowel resection. J.P.E.N. 10:343–350.

    CAS  Google Scholar 

  64. Reimer, R.A. and McBurney, M.I. 1996. Dietary fiber modulates intestinal proglucagon messenger ribonucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats. Endocrinol. in press.

    Google Scholar 

  65. Southon, S., Gee, J.M. and Johnson, I.T. 1987. The effect of dietary protein source and guar gum on gastrointestinal growth and enteroglucagon secretion in the rat. Br. J. Nutr. 58:65–72.

    Article  CAS  Google Scholar 

  66. Gee, J.M., Lee-Fingias, W., Wortley, G.W. and Johnson, I.T. 1996. Fermentable carbohydrates elevate plasma enteroglucagon but high viscosity is also necessary to stimulate small bowel mucosal proliferation in rats. J. Nutr. 126:373–379.

    CAS  Google Scholar 

  67. Bell, G.I., Sanchez-Pescador, R., Laybourn, P.J. and Najarian, R.C. 1983. Exon duplication and divergence in the human preproglucagon gene. Nature 304:368–371.

    Article  CAS  Google Scholar 

  68. Hoist, J.J. 1994. Glucagonlike peptide 1: a newly discovered gastrointestinal hormone. Gastroenterol. 107:1848–1855.

    Google Scholar 

  69. Sagor, G.R., Al-Mukhtar, M.Y.T., Ghatel, M.A., Wright, N.A., and Bloom, S.R. 1982. The effect of altered luminal nutrition on cellular proliferation and plasma concentrations of enteroglucagon and gastrin after small bowel resection in the rat. 1982. Br. J. Surg. 69:14–18.

    Article  CAS  Google Scholar 

  70. Sagor, G.R., Ghatel, M.A., Al-Mukhtar, M.Y.T., Wright, N.A. and Bloom, S.R. 1983. Evidence for a humoral mechanism after small intestinal resection: exclusion of gastrin but not enteroglucagon. Gastroenterol. 84:902–906.

    CAS  Google Scholar 

  71. Gomacz, G.E., Al-Mukhtar, M.Y.T., Ghatei, M.A., Sagor, G.R., Wright, N.A. and Bloom, S.R. 1984. Pattern of cell proliferation and enteroglucagon reponse following small bowel resection in the rat. Digestion 29:65–72.

    Article  Google Scholar 

  72. Mojsov, S., Weir, G.C. and Habener, J.F. 1987. Insulinotropin: glucagon-like peptide 1-(7–37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79:616–619.

    Article  CAS  Google Scholar 

  73. Hoist, J.J., Orskov, C., Vagn Nielsen, O. and Schwartz, T.W. 1987. Truncated glucgon-like peptide I, and insulin-releasing hormone from the distal gut. FEBS Lett 211:169–173.

    Article  Google Scholar 

  74. Jenkins, D.J.A., Jenkins, M.A., Wolever, T.M.S., Taylor, R.H. and Ghafari, H. 1986. Slow release carbohydrate: mechanism of action of viscous fibers. J. Clin. Nutr. Gastroenterol. 1:237–241.

    CAS  Google Scholar 

  75. Aro, A., Uusitupa, M., Voutilainen, E., Hersio, K., Korhonen, T. and Siitonen, O. 1981. Improved diabetic control and hypocholesterolemic effect induced by long-term supplementation with guar gum in type 2 (insulin-dependent) diabetes. Diabetologia 21:29–33.

    Article  CAS  Google Scholar 

  76. Lovejoy, J. and DiGirolama, M. 1992. Habitual dietary intake and insulin sensitivity in lean and obese adults. Am. J. Clin. Nutr. 55:1174–1179.

    CAS  Google Scholar 

  77. Groop, P.H., Aro, A., Stenman, S. and Group, L. 1993. Long term effects of guar gum in subjects with non-insulin dependent diabetes mellitus. Am. J. Clin. Nutr. 58:513–518.

    CAS  Google Scholar 

  78. Hagander, B., Scherst??n, B. and Asp, N-G. 1984. Effect of dietary fiber on blood glucose, plasma immunoreactive insulin. C-peptide, and GIP responses in non-insulin dependent (type 2) diabetics and controls. Acta. Med. Scand. 215:205–213.

    Article  CAS  Google Scholar 

  79. McBumey, M.I., Apps, K.V.J. and Finegood, D.T. 1995. Splanchnic infusions of short chain fatty acids do not change insulin sensitivity of pigs. J. Nutr. 125:2571–2576.

    Google Scholar 

  80. Nauck, M.A., Niedereicholz, U., Ettler, R., Orskov, C., Hoist, J.J. and Schmieget, W. 1996. Am. Gastroenterol. Assoc., San Francisco, CA (abst 72).

    Google Scholar 

  81. Schirra, J., Leicht, P., Hildebrand, P., Beglinger, C., Goke, B. and Katschinski, M;. 1996. Am. Gastroenterol. Assoc., San Francisco,CA (abst 79).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

McBurney, M.I., Reimer, R.A., Tappenden, K.A. (1997). Short Chain Fatty Acids, Intestinal Adaptation, and Nutrient Utilization. In: Kritchevsky, D., Bonfield, C. (eds) Dietary Fiber in Health and Disease. Advances in Experimental Medicine and Biology, vol 427. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5967-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5967-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7735-1

  • Online ISBN: 978-1-4615-5967-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics