Skip to main content

Probable Evolutionary History of Cryptomonad Algae

  • Chapter
Origins of Plastids

Abstract

It has been proposed that cryptomonad algae arose by two distinct endosymbiotic events, the first involving a photosynthetic prokaryote and a phagotrophic eukaryotic host and the second involving the resulting primitive eukaryotic alga and a different phagotrophic eukaryotic host. Cryptomonad algae are unique in retaining the nucleus of the first endosymbiont (the nucleomorph) in the space between the inner and outer plastid membrane pairs. Comparisons of small subunit rRNA sequences from the nucleomorph and nucleus show that two distinct endosymbiotic events involving phylogenetically distinct eukaryotes contributed to the formation of the cryptomonad cell. Phylogenetic reconstructions using the sequences of plastid ribosomal RNA and ribulose-1,5-bisphosphate carboxylase/ oxygenase genes are presented and the evolutionary history of the cryptomonad plastid discussed. The evolution of other photosynthetic groups, deduced from the above sequence information, is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen, K. and M. Wilke-Douglas. 1984. Construction and use of a gene bank of Alcaligenes eutrophus in the analysis of ribulose bisphosphate carboxylase genes. J. Bacteriol. 169:1997–2004.

    Google Scholar 

  • Assali, N.E., R. Mache, and S. Loiseaux DeGöer. 1990. Evidence for a composite phylogenetic origin of the plastid genome of the brown alga Pylaiella littorales (L.) Kjellm. Plant Mol. Biol. 15:307–315.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, D., H.J. Elwood, L.J. Goff, and N.L. Sogin. 1990. Phylogeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J. Phycol. 6:181–186.

    Article  Google Scholar 

  • Cavalier-Smith, T. 1982. The origins of plastids. Biol. J. Linn. Soc. 17:289–306.

    Article  Google Scholar 

  • Cavalier-Smith, T. 1986. The kingdom Chromista: Origin and systematics. Prog. Phycol. Res. 4:309–347.

    Google Scholar 

  • Cavalier-Smith, T. 1989. The kingdom Chromista. p.381–407. In:The Chromophytic Algae: Problems and Perspectives, J.C. Green, B.S.C. Leadbeater, and W.L. Diver (eds). Clarendon Press, Oxford.

    Google Scholar 

  • Delaney, T.P. and R.A. Cattolico. 1989. Chloroplast ribosomal DNA organization in the chromophytic alga Olisthodiscus luteus. Curr. Genet. 15:221–229.

    Article  PubMed  CAS  Google Scholar 

  • Destombe, C. and S.E. Douglas. 1991. Rubisco spacer sequence divergence in the rhodophyte alga Gracilaria verrucosa and closely related species. Curr. Genet. 19:395–398

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S.E. 1988. Physical mapping of the plastid genome from the chlorophyll c-containing alga, Cryptomonas Φ. Curr. Genet. 14:591–598.

    Article  CAS  Google Scholar 

  • Douglas, S.E. 1991. Unusual organization of a ribosomal operon in the plastid genome of Cryptomonas c: evolutionary considerations. Curr. Genet. 19:289–294.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S.E. 1992. A secY homologue is found in the plastid genome of Cryptomonas c. FEBS Lett. 298:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S.E. and D.G. Dumford. 1989. The small subunit of ribulose-1,5bisphosphate carboxylase/oxygenase plastid-encoded in the chlorophyll c-containing alga Cryptomonas 1. Plant Mol Biol. 13:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, S.E. and D.G. Dumford. 1990a. Sequence analysis of the plastid rDNA spacer region of the chlorophyll c-containing alga Cryptomonas Φ). DNA Sequence: J. DNA Sequencing and Mapping 1:55–62.

    CAS  Google Scholar 

  • Douglas, S.E. and D.G. Dumford. 1990b. Nucleotide sequence of the genes for ribosomal protein S4 and tRNA’s from the chlorophyll c-containing alga Cryptomonas c. Nucl Acids Res. 18:1903.

    Article  CAS  Google Scholar 

  • Douglas, S.E., D.G. Durnford, and C.W. Morden. 1990. Nucleotide sequence of the gene for the large subunit of nbulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas c: Evidence supporting the polyphyletic origin of plastids. J. Phycol. 26:500–508.

    Article  CAS  Google Scholar 

  • Douglas, S.E., C.A. Murphy, D.F. Spencer, and M.W. Gray. 1991. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Nature (Lond.) 350:148–151.

    Article  CAS  Google Scholar 

  • Douglas, S.E. and S. Turner. 1991. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J. Mol Evol 33:267–273.

    Article  PubMed  CAS  Google Scholar 

  • Eschbach, S., C.J.B. Hofmann, U.G. Maier, P. Sitte, and P. Hansmann. 1991a. A eukaryotic genome of 660 kb: electrophoretic karyotype of a nucleomorph and cell nucleus of the cryptomonad Pyrenomonas salina. Nucl Acids Res. 19:1779–1781.

    Article  CAS  Google Scholar 

  • Eschbach, S., J. Wolters, and P. Sitte. 1991b. Primary and secondary structure of the nuclear small-subunit ribosomal RNA of the cryptomonad Pyrenomonas salina as inferred from the gene sequence: Evolutionary implications. J. Mol Evol. 32:247–252.

    Article  CAS  Google Scholar 

  • Felsenstein, J. 1990. PHYLIP Manual, Version 3.3. Herbarium, University of California, Berkeley.

    Google Scholar 

  • Gibbs, S.P. 1962. Nuclear envelope-chloroplast relationships in algae. J. Cell Biol. 14:433–444.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, S.P. 1978. The chloroplasts of Euglena may have evolved from symbiotic green algae. Can. J. Bot. 56:2883–2889.

    Article  Google Scholar 

  • Gibbs, S.P. 1981. The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Annu. NY Acad. Sci. 361:193–208.

    Article  CAS  Google Scholar 

  • Gillott, M.A. and S.P. Gibbs. 1980. The cryptomonad nucleomorph: its ultrastructure and evolutionary significance. J. Phycol. 16:558–568.

    Article  Google Scholar 

  • Glazer, A.N. and G.S. Apel. 1977. A common evolutionary origin for the biliproteins of cyanobacteria, Rhodophyta and Cryptophyta. FEMS Lett. 1:113–116.

    Article  CAS  Google Scholar 

  • Graf, L., H. Kössel, and E. Stutz. 1980. Sequencing of 16S–23S spacer in a ribosomal RNA operon of Euglena gracies chloroplast DNA reveals two tRNA genes. Nature (Lond.) 286: 908–910.

    Article  CAS  Google Scholar 

  • Gray, M.W., D. Sankoff, and R.J. Cedergren. 1984. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucl. Acids Res. 12:5837–5852.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, A.D., H.B. Griffiths, and U.J. Santore. 1977. Chloroplasts and cell compartments in Cryptophyceae. Br. PhycoL J. 12:119.

    Google Scholar 

  • Gunderson, J.H., H. Elwood, A. Ingold, K. Kindle, and M.L. Sogin. 1987. Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. Proc. NatL Acad. Sci. USA 84:5823–5827.

    Article  PubMed  CAS  Google Scholar 

  • Gutell, R.R., B. Weiser, C.R. Woese, and H.F. Noller. 1985. Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucleic. Acid Res. Mol. Biol. 32:155–216.

    Article  PubMed  CAS  Google Scholar 

  • Hansmann, P. 1988. Ultrastructural localization of RNA in cryptomonads. Protoplasma 146:81–88.

    Article  Google Scholar 

  • Hansmann, P., H. Falk, and P. Sitte. 1985. DNA in the nucleomorph of Cryptomonas demonstrated by DAPI fluorescence. Z. Naturforsch. 40c:933–935.

    CAS  Google Scholar 

  • Hansmann, P. and S. Eschbach. 1990. Isolation and preliminary characterization of the nucleus and the nucleomorph of a cryptomonad, Pyrenomonas salina. Eur. J. Cell Biol. 52:373–378.

    PubMed  CAS  Google Scholar 

  • Hendriks, L., R. De Baere, Y. Van de Peer, J. Neefs, A. Goris, and R. De Wachter. 1991. The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J. MoL Evol. 32:167–177

    Article  PubMed  CAS  Google Scholar 

  • Hwang, S.R. and F.R. Tabita. 1991. Acyl carrier protein-derived sequence encoded by the chloroplast genome in the marine diatom Cylindrotheca sp. strain Nl. J. BioL Chem. 226:13492–13494.

    Google Scholar 

  • Janssen, I., H. Mucke, W. Loffelhardt, and H.J. Bohnert. 1987. The central part of the cyanelle rDNA unit of Cyanophora paradoxa Sequence comparison with chloroplasts and cyanobacteria. Plant Mol. Biol. 9:479–484.

    Article  CAS  Google Scholar 

  • Jenkins, J., R.G. Hiller, J. Speirs, and J. Godovac-Zimmermann, 1990. A genomic clone encoding a cryptophyte phycoerythrin a-subunit. Evidence for three a subunits and an N-terminal membrane transit sequence. FEBS Leu. 273:191–194.

    Article  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111–120.

    Article  PubMed  CAS  Google Scholar 

  • Koch, W., K. Edwards, and H. Kössel. 1981. Sequencing of the 16S–23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes. Cell 25:203–213.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa, M., K. Valentin, U. Maid, R. Radetzky, and K. Zetsche. 1990. Structure of the rubisco operon from the multicellular red alga Antithamnion spec. CWT. Genet. 18:465–469.

    CAS  Google Scholar 

  • Kowallik, K.V. 1989. Molecular aspects and phylogenetic implications of plastid genomes of certain chromophytes. p.101–124. In: The Chromophytic Algae: Problems and Perspectives, J.C. Green, B.S.C. Leadbeater, and W.L. Diver (eds). Clarendon Press, Oxford.

    Google Scholar 

  • Kuhsel, M. and K.V. Kowallik. 1987. The plastome of a brown alga, Dictyota dichotoma. II. Location of structural genes coding for ribosomal RNAs, the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and for polypeptides of photosystems I and II. Mol. Gen. Genet. 207:361–368.

    Article  CAS  Google Scholar 

  • Kuhsel, M.G., R. Strickland, and J.D. Palmer. 1990. An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573.

    Article  PubMed  CAS  Google Scholar 

  • Lemaux, P.G. and A.R. Grossman. 1985. Major light-harvesting polypeptides encoded in polycistronic transcripts in a eukaryotic alga. EMBO J. 4:1911–1919.

    PubMed  CAS  Google Scholar 

  • Lenaers, G., C. Scholin, Y. Bhaud, D. Sainte-Hilaire, and M. Herzog. 1991. A molecular phylogeny of dinoflagellate protists (Pyrrhophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J. Mol. Evol. 32:53–63.

    Article  PubMed  CAS  Google Scholar 

  • Li, N. and R.A. Cattolico. 1987. Chloroplast genome characterization in the red alga Griffzthsia pacifica. Mol. Gen. Genet. 209:343–351.

    Article  PubMed  CAS  Google Scholar 

  • Löffelhardt, W., R. Flachmann, C. Neumann-Spallart, C.B. Michalowski, and H.J. Bohnert. 1991. secY, part of the bacterial protein export complex from Cyanophora paradoxa cyanelles. Third International Congress of ISPMB. Tucson, AZ. 6–11 October 1991.

    Google Scholar 

  • Ludwig, M. and S.P. Gibbs. 1985. DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20.

    Article  Google Scholar 

  • Maerz, M. and P. Sitte. 1991. Isolation, physical map and gene map of mitochondria) DNA from the cryptomonad Pyrenomonas salina. Plant Mol. Biol. 16:593–600.

    Article  PubMed  CAS  Google Scholar 

  • Maid, U. and K. Zetsche. 1990. Nucleotide sequence of the plastid 16S rRNA gene of the red alga Cyanidium caldarium. Nucl. Acids Res. 18:3996.

    Article  PubMed  CAS  Google Scholar 

  • Maid, U. and K. Zetsche. 1991. Structural features of the plastid ribosomal RNA operons of two red algae: Antithamnion sp. and Cyanidium caldarium. Plant Mol. Biol. 16:537–546.

    Article  PubMed  CAS  Google Scholar 

  • Manhart, J.R. and J.D. Palmer. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature (Lond.) 345:268–270.

    Article  CAS  Google Scholar 

  • Margulis, L. 1970. Origin of Eukaryotic Cells. Yale University Press, New Haven and London.

    Google Scholar 

  • Margulis, L. and R. Obar. 1985. Heliobacterium and the origin of chrysoplasts. BioSystems 17:317–325.

    Article  PubMed  CAS  Google Scholar 

  • Markowicz, Y., S. Loiseaux-DeGöer, and R. Mache. 1988b. Presence of a 16S rRNA pseudogene in the bi-molecular plastid genome of the primitive brown alga Pylaiella littoralis. Evolutionary implications. Curr. Genet. 14:599–608.

    Article  CAS  Google Scholar 

  • Markowicz, Y., R. Mache, and S. Loiseaux-De Göer. 1988a. Sequence of the plastid rDNA spacer region of the brown alga Pylaiella littoralis (L.) Kjellm. Evolutionary significance. Plant Mol. Biol. 10:465–469.

    Article  CAS  Google Scholar 

  • Markowicz, Y. and S. Loiseaux-DeGöer. 1991. Plastid genomes of the Rhodophyta and Chromophyta constitute a distinct lineage which differs from that of the Chlorophyta and have a composite phylogenetic origin, perhaps like that of Euglenophyta. Curr. Genet. 20:427–430.

    Article  PubMed  CAS  Google Scholar 

  • McFadden, G.I. 1990. Evidence that cryptomonad chloroplasts evolved from photosynthetic eukaryotic endosymbionts. J. Cell Sci. 95:303–308.

    CAS  Google Scholar 

  • McKerracher, L. and S.P. Gibbs. 1982. Cell and nucleomorph division in the alga Cryptomonas. Can. J. Bot. 60:2440–2452.

    Article  Google Scholar 

  • Morden, C.W. and S.S. Golden. 1991. Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyll b containing prokaryote Prochlorothrix hollandica. J. Mol. Evol. 32:379–395.

    Article  PubMed  CAS  Google Scholar 

  • Neefs, J.M., Y. van de Peer, L. Hendriks, R. DeWachter. 1990. Compilation of small ribosomal RNA sequences. Nucl. Acids Res. 18(suppl):2237–2247.

    Article  PubMed  CAS  Google Scholar 

  • Neumann-Spallart, C., J. Jakowitsch, M. Kraus, M. Brandtner, H.J. Bohnert and W. Löffelhardt. 1991. rps10, unreported for plastid DNAs, is located on the cyanelle genome of Cyanophora paradoxa and is cotranscribed with the str operon genes. Curr. Genet. 19:313–315.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, M., J.L. Yates, D. Dean, and L.E. Post. 1980. Feedback regulation of ribosomal protein gene expression in Escherichia coli: Structural homology between ribosomal RNA and ribosomal protein mRNA. Proc. Natl. Acad. Sci. USA 77:7084–7088

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.D. 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19:325–354.

    Article  PubMed  CAS  Google Scholar 

  • Perasso, R., A. Baroin, L.H. Qu, J.P. Bachellerie, and A. Adoutte. 1989. Origin of the algae. Nature (Lond.) 339:142–144.

    Article  CAS  Google Scholar 

  • Pribnow, D. 1975. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc. Nat. Acad. Sci. USA 72:784–788.

    Article  PubMed  CAS  Google Scholar 

  • Raven, P.H. 1970. A multiple origin for plastids and mitochondria. Science 169:641–646.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M. and R.A. Cattolico. 1986. Inverted repeat of Olisthodiscus luteus chloroplast DNA contains genes for both subunits of ribulose-1, 5-bisphosphate carboxylase and the 32,000-dalton Qb protein: phylogenetic implications. Proc. Natl. Acad. Sci. USA 83:8599–8603.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M. and S.E. Douglas. 1990. Localization of ß-phycoerythrin to the thylakoid lumen of Cryptomonas it does not require a transit peptide. Plant Mol. Biot. 15:585–592.

    Article  CAS  Google Scholar 

  • Reith, M. and J. Munholland. 1991. An hsp70 (dnaK) homolog is encoded on the plastid genome of Porphyra umbilicalis. Third International Congress of ISPMB. Tucson, AZ, 6–11 October 1991.

    Google Scholar 

  • Rice, E.L. and C.J. Bird. 1990. Relationships among geographically distant populations of Gracilaria verrucosa (Gracilariales, Rhodophyta) and related species. Phycologia 29:501–510.

    Article  Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbour joining method: A new method for reconstructing phylogenetic trees. Mol. Biot Evol. 4:406–425.

    CAS  Google Scholar 

  • Schnare, M.N., T.Y.K. Heinonen, P.G. Young, and M.W. Gray. 1986. A discontinuous small subunit ribosomal RNA in Tetrahymena pyriformis mitochondria. J. Biol. Chem. 261:5187–5193.

    PubMed  CAS  Google Scholar 

  • Schneider, M. and J.D. Rochaix. 1986. Sequence organization of the chloroplast ribosomal spacer of Chlamydomonas reinhardtü Uninterrupted tRNAU° and tRNAAla genes and extensive secondary structure. Plant Mol. Biol. 6:265–270.

    Article  CAS  Google Scholar 

  • Shinozaki, K. and M. Sugiura. 1985. Genes for the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase constitute a single operon in a cyanobacterium Anacystis nidulans 6301. Mol. Gen. Genet. 200:27–32.

    Article  CAS  Google Scholar 

  • Shivji, M.S. 1991. Organization of chloroplast genome in the red alga Porphyra yezoensis. Curr. Genet. 19:49–54

    Article  CAS  Google Scholar 

  • Siemester, G. and W. Hachtel. 1990. Organization and nucleotide sequence of ribosomal RNA genes on a circular 73 kbp DNA from the colourless flagellate Astasia longa. Curr. Genet. 17:433–438.

    Article  Google Scholar 

  • Singh, R.K. 1991. The small and large subunits of ribulose-1,5-bisphosphate carboxylase (Rubisco) are encoded in the plastid genome of the red alga Palmaria palmata: similarity with the chemoautotrophic bacterium Alcaligenes eutrophus. Third International Congress of ISPMB. Tucson, AZ, 6–11 October 1991.

    Google Scholar 

  • Sogin, M.L., J.H. Gunderson, H.J. Elwood, R.A. Alonso, and D.A. Peattie. 1989. Phylogenetic meaning of the Kingdom concept: An unusual ribosomal RNA from Giardia lamblia. Science 243:75–77.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D.L. 1989. PAUP Version 3.0. Illinois Natural History Survey. Champagne, Illinois. 43 pp.

    Google Scholar 

  • Turner, S., S. Giovannoni, T. Burger-Wiersma, and N.R. Pace. 1989. The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Nature (Lond.) 337:380–382.

    Article  CAS  Google Scholar 

  • Urbach, E., D.L. Robertson, and S.W. Chisholm. 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–269.

    Article  PubMed  CAS  Google Scholar 

  • Valentin, K. and K. Zetsche. 1989. The genes of both subunits of ribulose-1, 5-bisphosphate carboxylase constitute an operon on the plastome of a red alga. Curr. Genet. 16:203–209.

    Article  PubMed  CAS  Google Scholar 

  • Valentin, K. and K. Zetsche. 1990a. Nucleotide sequence of the gene for the large subunit of Rubisco from Cyanophora paradoxa — phylogenetic implications. Curr. Genet. 18:199–202.

    Article  CAS  Google Scholar 

  • Valentin, K. and K. Zetsche. 1990b. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium — evidence of a polyphyletic origin of the plastids. Mol. Gen. Genet. 220:425–430.

    Article  Google Scholar 

  • Valentin, K. and K. Zetsche. 1990c. Rubisco genes indicate a close phylogenetic relation between the plastids of Chromophyta and Rhodophyta. Plant Mol. BioL 15:575–584.

    Article  CAS  Google Scholar 

  • Wang, S. and X.-Q. Liu. 1991. The plastid genome of Cryptomonas encodes an hsp70-like protein, a histone-like protein, and an acyl carrier protein. Proc. NatL Acad. Sci. USA 88:10783–10787.

    Article  PubMed  CAS  Google Scholar 

  • Whatley, J.M., P. John, and F.R. Whatley. 1979. From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc. R. Soc. Lond. B204:165–187.

    Article  Google Scholar 

  • Whatley, J.M. and F.R. Whatley. 1981. Chloroplast evolution. New Phytol. 87:233–247.

    Article  CAS  Google Scholar 

  • Williamson, S.E. and W.F. Doolittle. 1983. Genes for tRNAIle and tRNAAla in the spacer between the 16S and 23S rRNA genes of a blue-green alga: Strong homology to chloroplast tRNA genes and tRNA genes of the E. coli rrnD gene cluster. Nucl. Acids Res. 11:225–235.

    Article  PubMed  CAS  Google Scholar 

  • Witt, D. and E. Stackebrandt. 1988. Disproving the hypothesis of a common ancestry for the Ochromonas danica chrysoplast and Heliobacterium chlorum. Arch. Microbiol. 150:244–248.

    Article  Google Scholar 

  • Yamada, T. and M. Shimaji. 1986. Peculiar feature of the organization of rRNA genes of the Chlorella chloroplast DNA. Nucl. Acids Res. 14:3827–3839.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Douglas, S.E. (1992). Probable Evolutionary History of Cryptomonad Algae. In: Lewin, R.A. (eds) Origins of Plastids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2818-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2818-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6218-0

  • Online ISBN: 978-1-4615-2818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics