Skip to main content

The Effect of Inner Speech on Arterial CO2 and Cerebral Hemodynamics and Oxygenation: A Functional NIRS Study

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 789))

Abstract

The aim of the present study was (i) to investigate the effect of inner speech on cerebral hemodynamics and oxygenation, and (ii) to analyze if these changes could be the result of alternations of the arterial carbon dioxide pressure (PaCO2). To this end, in seven adult volunteers, we measured changes of cerebral absolute [O2Hb], [HHb], [tHb] concentrations and tissue oxygen saturation (StO2) (over the left and right anterior prefrontal cortex (PFC)), as well as changes in end-tidal CO2 (PETCO2), a reliable and accurate estimate of PaCO2. Each subject performed three different tasks (inner recitation of hexameter (IRH) or prose (IRP) verses) and a control task (mental arithmetic (MA)) on different days according to a randomized crossover design. Statistical analysis was applied to the differences between pre-baseline, two tasks, and four post-baseline periods. The two brain hemispheres and three tasks were tested separately. During the tasks, we found (i) PETCO2 decreased significantly (p < 0.05) during the IRH ( ~ 3 mmHg) and MA ( ~ 0.5 mmHg) task. (ii) [O2Hb] and StO2 decreased significantly during IRH ( ~ 1.5 μM; ~ 2 %), IRP ( ~ 1 μM; ~ 1.5 %), and MA ( ~ 1 μM; ~ 1.5 %) tasks. During the post-baseline period, [O2Hb] and [tHb] of the left PFC decreased significantly after the IRP and MA task ( ~ 1 μM and ~ 2 μM, respectively). In conclusion, the study showed that inner speech affects PaCO2, probably due to changes in respiration. Although a decrease in PaCO2 is causing cerebral vasoconstriction and could potentially explain the decreases of [O2Hb] and StO2 during inner speech, the changes in PaCO2 were significantly different between the three tasks (no change in PaCO2 for MA) but led to very similar changes in [O2Hb] and StO2. Thus, the cerebral changes cannot solely be explained by PaCO2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bettermann H, von Bonin D, Frühwirth M, Cysarz D, Moser M (2002) Effects of speech therapy with poetry on heart rate rhythmicity and cardiorespiratory coordination. Int J Cardiol 84(1):77–88

    Article  Google Scholar 

  2. von Bonin D, Frühwirth M, Heuser P, Moser M (2001) Effects of speech therapy with poetry on heart rate variability and well-being. Forsch Komplementarmed Klass Naturheilkd 8(3):144–160

    Google Scholar 

  3. Cysarz D, von Bonin D, Lackner H, Heusser P, Moser M, Bettermann H (2004) Oscillations of heart rate and respiration synchronize during poetry recitation. Am J Physiol Heart Circ Physiol 287(2):H579–H587

    Article  CAS  Google Scholar 

  4. Scholkmann F, Gerber U, Wolf M, Wolf U (2012) End-tidal CO2: an important parameter for a correct interpretation in functional brain studies using speech tasks. Neuroimage 66:71–79

    Article  CAS  Google Scholar 

  5. Wolf M, von Bonin D, Wolf U (2011) Speech therapy changes blood circulation and oxygenation in the brain and muscle: a near-infrared spectrophotometry study. Adv Exp Med Biol 701:21–25

    Article  CAS  Google Scholar 

  6. Wolf U, Scholkmann F, Rosenberger R, Wolf M, Nelle M (2011) Changes in hemodynamics and tissue oxygenation saturation in the brain and skeletal muscle induced by speech therapy – a near-infrared spectroscopy study. Sci World J 11:1206–1215

    Article  CAS  Google Scholar 

  7. Weinger MB, Brimm JE (1987) End-tidal carbon dioxide as a measure of arterial carbon dioxide during intermittent mandatory ventilation. J Clin Monit 3(2):73–79

    Article  CAS  Google Scholar 

  8. Scholkmann F, Spichtig S, Muehlemann T (2010) How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas 31(5):649–662

    Article  CAS  Google Scholar 

  9. Buxton RB (2012) Dynamic models of BOLD contrast. Neuroimage 62(2):953–961

    Article  Google Scholar 

  10. Szabo K, Lako E, Juhasz T, Rosengarten B, Csiba L, Olah L (2011) Hypocapnia induced vasoconstriction significantly inhibits the neurovascular coupling in humans. J Neurol Sci 309(1–2):58–62

    Article  Google Scholar 

  11. Grubb RL, Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5(5):630–639

    Article  Google Scholar 

  12. Sullivan RM, Gratton A (2002) Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology 27(1–2):99–114

    Article  CAS  Google Scholar 

  13. Buijs RM, Van Eden CG (2000) The integration of stress by the hypothalamus, amygdala and prefrontal cortex: balance between the autonomic nervous system and the neuroendocrine system. Prog Brain Res 126:117–132

    Article  CAS  Google Scholar 

  14. Koechlin E, Hyafil A (2007) Anterior prefrontal function and the limits of human decision-making. Science 318(5850):594–598

    Article  CAS  Google Scholar 

  15. Simons CJP, Tracy DK, Sanghera KK et al (2010) Functional magnetic resonance imaging of inner speech in schizophrenia. Biol Psychiatry 67(3):232–237

    Article  Google Scholar 

Download references

Acknowledgments 

We thank all subjects and the arts speech therapist Andrea Klapproth for their participation in this study, Rachel Folkes for proofreading of the manuscript, and the numerous participants of the ISOTT conferences 2010, 2011, and 2012 for their stimulating discussions about CO2 and cerebral hemodynamics/oxygenation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Scholkmann, F., Wolf, M., Wolf, U. (2013). The Effect of Inner Speech on Arterial CO2 and Cerebral Hemodynamics and Oxygenation: A Functional NIRS Study. In: Van Huffel, S., Naulaers, G., Caicedo, A., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXV. Advances in Experimental Medicine and Biology, vol 789. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7411-1_12

Download citation

Publish with us

Policies and ethics