Skip to main content

Toxicokinetics: A Guidance for Assessing Systemic Exposure in Toxicology Studies, Where Are We Now; An S3A/S3B Update (1995–2011)

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 5))

Abstract

The ICH S3A and S3B guidances written in 1995 have been critically examined by one author whom helped write the original guidance and the other who has had to put them into practice. The objectives of the guidances were to clarify across the three regions when, what and how drug levels in pivotal safety studies should be measured using GLP-validated methods and how the results could be used to reduce the number of exploratory animal pharmacokinetic studies and reduce their emphasis. Although it has formed a good basic framework to move forward, subsequent guidances have been required. These have included the metabolites in safety testing (MIST) providing further information on which metabolites to measure and when disproportionate human levels not qualified in animals need to be further tested and bioanalytically validated. New advances in sampling techniques, composite and auto-sampling, microsampling with plasma separation, dried blood spot analysis (DBS) and kinetic population approaches of the data to enable serial concomitant sampling are discussed. Other topics of uncertainty which are discussed include when to measure tissue distribution (ICH S3B), should exposure measurement be included in in vitro studies (mutagenicity, hERG, cytotoxicity, etc.), should protein binding be measured at NOAEL and safety margins expressed as total or free unbound levels and when is Cmax more appropriate than AUC. It is suggested that toxicokinetic–toxicodynamic relationships should be investigated more frequently where possible using established biomarkers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarons L, Graham G (2001) Methodological approaches to the population analysis of toxicity data. Toxicol Lett 120:405–410

    Article  PubMed  CAS  Google Scholar 

  • Bailer AJ (1988) Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm 16:303–309

    Article  PubMed  CAS  Google Scholar 

  • Baillie TA, Cayen MN, Fouda H et al (2002) Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–196

    Article  PubMed  CAS  Google Scholar 

  • Baranczewski P, Stancazak A, Sundberg K et al (2006) Introduction to in vitro estimation of metabolic stability and drug interactions of new chemical entities in drug discovery and development. Pharm Rep 58:453–472

    CAS  Google Scholar 

  • Barr JR, Maggio VL, Patterson DG et al (1996) Isotope dilution – mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 42:1676–1682

    PubMed  CAS  Google Scholar 

  • Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb BC, Pelkonen OR, Tucker GT, Rostami-Hodjegan A (2007) Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8:33–45

    Article  PubMed  CAS  Google Scholar 

  • Batra VK (1995) Toxicokinetics/toxicodynamic correlations: goals, methods, and limitations. Toxicol Pathol 23(2):158–164

    Article  PubMed  CAS  Google Scholar 

  • Beharry M. (2010) DBS: a UK (MHRA) regulatory perspective. Bioanalysis. Aug;2(8):1363–1364

    Google Scholar 

  • Boxenbaum H (1982) Interspecies scaling, allometry, physiological time and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10:201–227

    Article  PubMed  CAS  Google Scholar 

  • Buchanan JB, Burke LT, Melnick L (1997) Purpose and guidelines for toxicokinetic studies within the national toxicology program. Environ Health Perspect 105:468–471

    Article  PubMed  CAS  Google Scholar 

  • Buscher BA, Gerritsen H, van Scholl I, Cnubben NH, Brull LP (2007) Quantitative analysis of Tenecteplase in rat plasma using LC-MS/MS as an alternative for ELISA. J Chromatogr B Analyt Technol Biomed Life Sci 852:631–634

    Article  PubMed  CAS  Google Scholar 

  • Campbell DB (1990) The development of chiral drugs. Acta Pharm Nord 2(3):217–226

    PubMed  CAS  Google Scholar 

  • Campbell DB (1995) The use of toxicokinetics for the safety assessment of drugs acting in the brain. Mol Neurobiol 11(1–3):193–216

    Article  PubMed  CAS  Google Scholar 

  • Carrera G, Mitjavila S, Lacombe C, Derache R (1976) Toxicocinetique d’un pesticide du groupe des thioquinoxalines: L’oxythioquinox. Toxicology 6:161–171

    Article  CAS  Google Scholar 

  • CDER/FDA (2006) Guidance for industry bioanalytical method validation; Fit for purpose method development and validation for successful biomarker measurement

    Google Scholar 

  • CDER–CBER–CDRH–FDA (2007) Guidance for industry: pharmacogenomics data submission

    Google Scholar 

  • CHMP/EMEA (2008a) Biomarker qualification: guidance to applicants

    Google Scholar 

  • CHMP/EMEA (2008b) Final report on the Pilot Joint EMEA/FDA/VXDS experience on qualification on nephrotoxicity biomarkers

    Google Scholar 

  • Cody RB, Laramee RB (2005) Versatile new ion source for analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302

    Article  PubMed  CAS  Google Scholar 

  • Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311: 1566–1570

    Article  PubMed  CAS  Google Scholar 

  • Crawford E, Gordon J, Wu J-T, Musselman B, Liu R, Yu S (2011) Direct analysis in real time coupled with dried spot sampling for bioanalysis in a drug-discovery setting. Bioanalysis 3:1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Dahlem AM, Allerheiligen SR, Vodicnk MJ (1995) Concomitant toxicokinetics: techniques for and interpretation of exposure obtained during the conduct of toxicology studies. Toxicol Pathol 23:170–178

    Article  PubMed  CAS  Google Scholar 

  • Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1:435–461

    Article  PubMed  CAS  Google Scholar 

  • Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu C-H, Stouch BJ, Hurh E, Gibbs MA (2011) Quantitative prediction of human pharmacokinetics for monoclonal antibodies. Clin Pharmacokinet 50:131–142

    Article  PubMed  CAS  Google Scholar 

  • EMEA (2011) Guideline on bioanalytical method validation

    Google Scholar 

  • Ezan E, Bitsch F (2009) Critical comparison of MS and immunoassays for the bioanalysis of therapeutic antibodies. Bioanalysis 1:1375–1388

    Article  PubMed  CAS  Google Scholar 

  • Fast DM, Kelley M, Viswanathan CT, O’Shaughnessy J, King SP, Chaudhary A, Weiner R, DeStefano AJ, Tang D (2008) Workshop report and follow-up—AAPS workshop on current topics in GLP bioanalysis: assay reproducibility for incurred samples—implications of crystal city recommendations. AAPS J 11:238–241

    Article  Google Scholar 

  • FDA (2001) FDA guidance for industry: bioanalytical method validation. FDA, Washington, DC

    Google Scholar 

  • FDA (2005) FDA guidance for industry: estimating the maximum safe starting dose in initial trials for therapeutics in adult healthy volunteers. FDA, Washington, DC

    Google Scholar 

  • FDA (2008) FDA guidance for industry: safety testing of drug metabolites. FDA, Washington, DC

    Google Scholar 

  • FDA (2009) FDA Guidance for Industry: M3(R2) Nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals, 2010; ICH Topic M3 (R2) Non-clinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. FDA, Washington, DC

    Google Scholar 

  • FDA (2010a) FDA guidance for industry: nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. FDA, Washington, DC

    Google Scholar 

  • FDA (2010b) FDA guidance for industry: S9 Nonclinical evaluation for anticancer pharmaceuticals. FDA, Washington, DC

    Google Scholar 

  • FDA Guidance (2011) Reproductive and developmental toxicities – integrated study results to access concerns

    Google Scholar 

  • Garner RC, Lappin G (2006) The phase 0 microdosing concept. Br J Clin Pharmacol 61:367–370

    Article  PubMed  Google Scholar 

  • Geber SA, Rush J, Stemman O, Kirschner MW, Gyqi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  Google Scholar 

  • Griffini P, James A, Roberts AD, Pellegatti M (2010) Metabolites in safety testing: issues and approaches to the safety evaluation of human metabolites in a drug that is extensively metabolized. J Drug Metab Toxicol 1:102

    Article  Google Scholar 

  • Grouzmann E, Cavadas C, Grand D, Moratel M, Aubert JF, Brunner HR, Mazzolai L (2003) Blood sampling methodology is crucial for precise measurement of plasma catecholamines concentrations in mice. Pflugers Arch 447(2):254–258

    Article  PubMed  CAS  Google Scholar 

  • Hashizume T, Yoshitomi S, Asahi S, Uematsu R, Matsumura S, Chatani F, Oda H (2010) Advantages of human hepatocyte-derived transformants expressing a series of human cytochrome p450 isoforms for genotoxicity examination. Toxicol Sci 116(2):488–497

    Article  PubMed  CAS  Google Scholar 

  • Hing JP, Woolfrey SG, Greenslade D, Wright PMC (2002) Distinguishing animal subsets in toxicokinetic studies: comparison of non-linear mixed effects modeling with non-compartmental methods. J Appl Toxicol 22:437–443

    Article  PubMed  CAS  Google Scholar 

  • Hoshino-Yoshino A, Kato M, Nakano K, Ishigai M, Kudo T, Ito K (2011) Bridging from preclinical to clinical studies for tyrosine kinase inhibitors based on pharmacokinetics/pharmacodynamics and toxicokinetics/toxicodynamics. Drug Metab Pharmacokinet 26(6):612–620

    Article  PubMed  CAS  Google Scholar 

  • ICH (1995a) ICH Topic S1C (R2): Dose selection for carcinogenicity studies of pharmaceuticals CHMP/ICH/383/95

    Google Scholar 

  • ICH (2009) ICH Topic M3 (R2): Non-clinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals

    Google Scholar 

  • ICH (1994) Pharmacokinetics: guidance for repeated dose tissue distribution studies S3B

    Google Scholar 

  • ICH (1995b) Note for guidance on toxicokinetics: the assessment of systemic exposure in toxicity studies S3A

    Google Scholar 

  • Ings R (1989) Pharmacokinetics and its application to drug development. In: Illing HPA (ed) Xenobiotic metabolism and disposition: the design of studies on novel compounds. CRC, Boca Raton, FL

    Google Scholar 

  • Ings R (1990) Interspecies scaling and comparisons in drug development and toxicokinetics. Xenobiotica 20:1201–1231

    Article  PubMed  CAS  Google Scholar 

  • Ings R (2009) Microdosing: a valuable tool for accelerating drug development and the role of bioanalytical methods in meeting the challenge. Bioanalysis 1:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Ingwersen SH, Kiehr B, Iversen L, Andersen MP, Petersen Y, Rytved KA (2002) Non-linear mixed effects modeling of sparse concentration data from rats: application to a glycogen phosphorylase inhibitor. Eur J Drug Metab Pharmacokinet 27:203–212

    Article  PubMed  CAS  Google Scholar 

  • Ji QC, Rodila R, Gage EM, El-Shourbagy TA (2003) A strategy of plasma protein quantitation by selective reaction monitoring of an intact protein. Anal Chem 75:7008–7014

    Article  PubMed  CAS  Google Scholar 

  • Kalvass CJ, Maurer TS, Pollack GM (2007) Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo P-glycoprotein efflux ratios. Drug Metab Dispos 35:660–666

    Article  PubMed  CAS  Google Scholar 

  • Khor SP, McCarthy K, Dupont M, Murray K, Timony G (2000) Pharmacokinetics, pharmacodynamics, allometry and dose selection of rPSGL-Ig for phase I trial. J Pharmacol Exp Ther 293: 618–624

    PubMed  CAS  Google Scholar 

  • Kippen AD, Cerini F, Vadas L, Stocklin R, Vu L, Offord RE, Rose K (1997) Development of an isotope dilution assay for precise determination of insulin, C-peptide and proinsulin levels in non-diabetic and type II diabetic individuals with comparison to immunoassay. J Biol Chem 272:12513–12522

    Article  PubMed  CAS  Google Scholar 

  • Kurawattimath V, Pocha K, Thanga Mariappan T, Trivedi RK, Mandlekar S (2012) A modified serial blood sampling technique and utility of dried-blood spot technique in estimation of blood concentration: application in mouse pharmacokinetics. Eur J Drug Metab Pharmacokinet 37(1):23–30

    Article  PubMed  CAS  Google Scholar 

  • Lavé T, Chapman K, Goldsmith P, Rowland M (2009) Human clearance prediction: shifting the paradigm. Expert Opin Drug Metab Toxicol 5(9):1039–1048

    Article  PubMed  Google Scholar 

  • Li F, Zulkoski J, Fast D, Michael S (2011) Perforated dried blood spots: a novel format for accurate microsampling. Bioanalysis 3(20):2321–2333

    Article  PubMed  CAS  Google Scholar 

  • Mahmood I (2007) Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development. Adv Drug Deliv Rev 59:1177–1192

    Article  PubMed  CAS  Google Scholar 

  • Miida H, Arakawa S, Shibaya Y, Honda K, Kiyosawa N, Watanabe K, Manabe S, Takasaki W, Ueno K (2008) Toxicokinetic and toxicodynamic analysis of clofibrate based on free drug concentrations in nagase analbuminemia rats (NAR). J Toxicol Sci 33(3):349–361

    Article  PubMed  CAS  Google Scholar 

  • Muller PY, Dieterle F (2009) Tissue specific, non invasive toxicity biomarkers; translation from preclinical safety assessment to clinical safety monitoring. Expert Opin Drug Metab Toxicol 5(9):1023–1036

    Article  PubMed  CAS  Google Scholar 

  • Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ et al (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283:46–58

    PubMed  CAS  Google Scholar 

  • Peck CC, Barr WH, Benet LZ et al (1994) Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. J Clin Pharmacol 34(2):111–119

    PubMed  CAS  Google Scholar 

  • Peterson RA, Gabrielson KL, Allan Johnson G, Pomper MG, Coatney RW, Winkelmann CT (2011) Continuing education course #1: non-invasive imaging as a problem-solving tool and translational biomarker strategy in toxicologic pathology. Toxicol Pathol 39(1):267–272

    Article  PubMed  Google Scholar 

  • Rowland M, Benet LZ, Graham GG (1973) Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1:123–136

    Article  PubMed  CAS  Google Scholar 

  • Rueff J, Chiapella C, Chipman JK et al (1996) Development and validation of alternative metabolic systems for mutagenicity testing in short-term assays. Mutat Res 353(1–2):151–176

    PubMed  Google Scholar 

  • Shah VP (2007) The history of bioanalytical method validation and regulation: evolution of a guidance document on bioanalytical methods validation. AAPS J 9:E43–E46

    Article  CAS  Google Scholar 

  • Shah VP, Midha KK, Dighe SV et al (1992) Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Pharm Res 9:588–592

    Article  Google Scholar 

  • Shah VP, Midha KK, Findlay JW et al (2000) Bioanalytical method validation – a revisit with a decade of progress. Pharm Res 17:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Shin BS, Kim DH, Cho CY et al (2003) Pharmacokinetic scaling of SJ-8029, a novel anticancer agent possessing microtubule and topoisomerase inhibiting activities, by species-invariant time methods. Biopharm Drug Dispos 24:191–197

    Article  PubMed  CAS  Google Scholar 

  • Smith C, Skyes A, Robinson S, Thomas E (2011) Evaluation of blood microsampling techniques and sampling sites for the analysis of drugs by HPLC-MS. Bioanalysis 3(2):145–156

    Article  PubMed  CAS  Google Scholar 

  • Vogel JS, Turtletaub KW, Finkel R, Nelson DE (1995) Accelerator mass spectrometry. Anal Chem 67:A353–A359

    Google Scholar 

  • Wong P, Pham R, Bruener B, James C (2010) Increasing efficiency for dried blood spot analysis: prospects for automation and simplified sample analysis. Bioanalysis 2:1787–1789

    Article  PubMed  CAS  Google Scholar 

  • Wsol V, Skalova B, Szotakova B (2004) Chiral inversion of drugs: coincidence or principle. Curr Drug Metab 5:517–533

    Article  PubMed  CAS  Google Scholar 

  • Zhong WZ, Williams MG, Branstetter DG (2000) Toxicokinetics in drug development: an overview of toxicokinetic application in the development of PNU-101017, an anxiolytic drug candidate. Curr Drug Metab 1(3):243–254

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Campbell, B., Ings, B. (2013). Toxicokinetics: A Guidance for Assessing Systemic Exposure in Toxicology Studies, Where Are We Now; An S3A/S3B Update (1995–2011). In: van der Laan, J., DeGeorge, J. (eds) Global Approach in Safety Testing. AAPS Advances in the Pharmaceutical Sciences Series, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5950-7_7

Download citation

Publish with us

Policies and ethics