Skip to main content

Skin Penetration of Engineered Nanomaterials

  • Chapter
  • First Online:
Book cover Nanotechnology in Dermatology

Abstract

Over the past decade, the field of nanoscience has grown tremendously because nanomaterials have widespread applications in material science, engineering, and medicine. Although this work has received a great deal of attention, many challenges must be overcome before nanotechnology can be routinely applied in nanomedicines or in consumer products. Nanomaterials are substances having a physicochemical structure on a scale greater than atomic/molecular dimensions but less than 100 nm, and exhibit physical, chemical, and/or biological characteristics associated with its nanostructure. It is these unique characteristics that made them central components in an array of emerging technologies. Many new companies have emerged to commercialize these products. However, before many of these nanomaterials can be used in biological systems, their toxicology must first be evaluated under realistic environmental, occupational, and medicinal exposure conditions. Engineered nanoparticles (NP) are used in many household products, personal care products including sunscreens and cosmetics, or as drug delivery devices and as contrast imaging agents. The focus of this chapter is to depict how skin can serve as a potential route of exposure to several types of nanomaterials, and will discuss how size, shape, charge, surface properties, and vehicles can be important determinants on the penetration through the rate-limiting lipid barrier of the stratum corneum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monteiro-Riviere NA, Inman AO, Ryman-Rasmussen JP. Dermal effects of nanomaterials. In: Monteiro-Riviere NA, Tran CL, editors. Nanotoxicology: characterization, dosing, and health effects. New York, NY: Informa Healthcare; 2007. p. 317–38.

    Google Scholar 

  2. Zhang LW, Monteiro-Riviere NA. Assessment of quantum dot penetration into intact, tape stripped, abraded and flexed rat skin. Skin Pharmacol Physiol. 2008;21:166–80.

    Article  PubMed  Google Scholar 

  3. Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol. 2008;228:200–11.

    Article  PubMed  CAS  Google Scholar 

  4. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review conducted out for ECETOC. Part Fibre Toxicol. 2006;3:11.

    Article  PubMed  Google Scholar 

  5. Faunce T, Murray K, Nasu H, Bowman D. Sunscreen safety: the precautionary principle, the Australian Therapeutic Goods Administration and nanoparticles in sunscreens. Nanoethics. 2008;2:231–40.

    Article  Google Scholar 

  6. Dussert AS, Gooris E. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci. 1997;19:119–29.

    Article  PubMed  CAS  Google Scholar 

  7. Gamer AO, Leibold E, van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro. 2006;20:301–7.

    Article  PubMed  CAS  Google Scholar 

  8. Tan MH, Commens CA, Burnett L, Snitch PJ. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Aust J Dermatol. 1996;37:185–7.

    Article  CAS  Google Scholar 

  9. Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al. Penetration of titanium dioxide in sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12:247–56.

    Article  PubMed  CAS  Google Scholar 

  10. Pflücker F, Wendel V, Hohenberg H, Gärtner E, Will T, Pfeiffer S, et al. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronized titanium dioxide. Skin Pharmacol Appl Skin Physiol. 2001;14(S1): 92–7.

    PubMed  Google Scholar 

  11. Schulz J, Hohenberg H, Pflücker F, Gartner E, Will T, PfeiVer S, et al. Distribution of sunscreens on skin. Adv Drug Deliv Rev. 2002;54(S1):S157–63.

    Article  PubMed  CAS  Google Scholar 

  12. Mavon A, Miquel C, Lejeune O, Payre B, Moretto P. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and mineral sunscreen. Skin Pharmacol Physiol. 2007;20:10–20.

    Article  PubMed  CAS  Google Scholar 

  13. Bennat C, Müller-Goymann CC. Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter. Int J Cosmet Sci. 2000;22:271–83.

    Article  PubMed  CAS  Google Scholar 

  14. Cross SE, Innes B, Roberts M, Tsuzuki T, Robertson TA, McCormick P. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol. 2007;20:148–54.

    Article  PubMed  CAS  Google Scholar 

  15. Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, et al. Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci. 2010;115:156–66.

    Article  PubMed  CAS  Google Scholar 

  16. Kertész Z, Szikszai Z, Gontier E, Moretto P, Surlève-Bazeille JE, Kiss B, et al. Nuclear microprobe study of TiO2-penetration in the epidermis of human skin xenografts. Nucl Instrum Methods Phys Res, Sect B. 2005;231:280–5.

    Article  Google Scholar 

  17. Menzel F, Reinert T, Vogt J, Butz T. Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instrum Methods Phys Res, Sect B. 2004;219–220:82–6.

    Article  Google Scholar 

  18. Kiss B, Biró T, Czifra G, Tóth BI, Kertész Z, Szikszai Z, et al. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol. 2008;17(8):659–67.

    Article  PubMed  CAS  Google Scholar 

  19. NANODERM. Quality of skin as a barrier to ultra-fine particles. Final Report. 2007 (Project Number: QLK4-CT-2002-02678). http://www.uni-leipzig.de/∼nanoderm/. Accessed 16 April 2012.

  20. SCCNFP. Opinion of the scientific committee on cosmetic products and non-food products intended for consumers concerning titanium dioxide. European Commission, Brussels, Belgium. Colipa No S 75; 2000.

    Google Scholar 

  21. SCCP. Preliminary opinion on safety of nanomaterials in cosmetic products. European Commission, Brussels, Belgium, 2007. http://ec.europa.eu/health/archive/ph_risk/committees/04_sccp/docs/sccp_o_123.pdf. Accessed 16 April 2012.

  22. Monteiro-Riviere NA, Baroli B. Nanomaterial penetration. In: Monteiro-Riviere NA, editor. Toxicology of the skin-target organ series. New York, NY: Informa Healthcare; 2010. p. 333–46.

    Google Scholar 

  23. Monteiro-Riviere NA, Riviere JE. Interaction of nanomaterials with skin: aspects of absorption and biodistribution. Nanotoxicology. 2009;3(3):188–93.

    Article  CAS  Google Scholar 

  24. Woodrow Wilson International Center for Scholars. A nanotechnology consumer products inventory. 2011. http://www.nanotechproject.org/consumerproucts. Accessed 16 April 2012.

  25. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176:1–12.

    Article  PubMed  CAS  Google Scholar 

  26. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, et al. Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009;3(2):109–38.

    Article  CAS  Google Scholar 

  27. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect. 2010;118(3):407–13.

    Article  PubMed  CAS  Google Scholar 

  28. Larese FF, D’Agostin F, Bovenzi M, Crosera M, Adami G, Romano C, et al. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology. 2009;255:33–7.

    Article  PubMed  CAS  Google Scholar 

  29. Larese FF, Adami G, Venier M, Coceani N, Bussani R, Massiccio M, et al. In vitro percutaneous absorption of cobalt. Int Arch Occup Environ Health. 2004;77:85–9.

    Article  Google Scholar 

  30. Samberg ME, Orndorff PE, Monteiro-Riviere NA. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology. 2011;5(2):244–53.

    Article  PubMed  CAS  Google Scholar 

  31. Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, et al. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen. 2007;15:94–104.

    Article  PubMed  Google Scholar 

  32. Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett. 2008;179:93–100.

    Article  PubMed  CAS  Google Scholar 

  33. Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces. 2008;65:1–10.

    Article  PubMed  CAS  Google Scholar 

  34. Larese FF, Crosera M, Adami G, Bovenzi M, Rossi F, Maina G. Human skin penetration of gold nanoparticles through intact and damaged skin. Nanotoxicology. 2011;5:493–501.

    Article  Google Scholar 

  35. Derfus AM, Chan WCW, Bhatia S. Probing the cytotoxicity of semiconductor nanocrystals. Nano Lett. 2004;4:11–8.

    Article  CAS  Google Scholar 

  36. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.

    Article  PubMed  CAS  Google Scholar 

  37. Ryman-Rasmussen J, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006;91:159–65.

    Article  PubMed  CAS  Google Scholar 

  38. Prow TW, Monteiro-Riviere NA, Inman AO, Grice JE, Chen X, Zhao X, et al. Quantum dot penetration into viable human skin. Nanotoxicology. 2012;6: 173–85.

    Article  PubMed  CAS  Google Scholar 

  39. Monteiro-Riviere NA, Inman AO. Evaluation of quantum dot nanoparticle penetration in human skin. Toxicologist. 2008;102 Suppl 1:211.

    Google Scholar 

  40. Lee HA, Imran M, Monteiro-Riviere NA, Colvin VL, Yu WW, Riviere JE. Biodistribution of quantum dot nanoparticles in perfused skin: evidence of coating dependency and periodicity in arterial extraction. Nano Lett. 2007;9:2865–70.

    Article  Google Scholar 

  41. Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, et al. Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci. 2007;98:249–57.

    Article  PubMed  CAS  Google Scholar 

  42. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Surface coatings determine cytotoxicity and ­irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol. 2007; 127:143–53.

    Article  PubMed  CAS  Google Scholar 

  43. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Variables influencing inter-actions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett. 2007;7:1344–8.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang LW, Monteiro-Riviere NA. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci. 2009;111:138–55.

    Article  Google Scholar 

  45. Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA. Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles. Toxicol In Vitro. 2008;22:491–7.

    Article  PubMed  CAS  Google Scholar 

  46. Monteiro-Riviere NA. Anatomical factors that affect barrier function. In: Zhai H, Wilhelm KP, Maibach HI, editors. Dermatotoxicology (Chap. 4). 7th ed. New York, NY: CRC Press; 2008. p. 39–50.

    Google Scholar 

  47. Riviere JE, Monteiro-Riviere NA. Toxicokinetics: dermal exposure and absorption of chemicals and nanomaterials. In: McQueen C, editor. Comprehensive toxicology. 2nd ed. New York, NY: Elsevier; 2010. p. 111–22.

    Chapter  Google Scholar 

  48. Monteiro-Riviere NA, Inman AO, Mak V, Wertz P, Riviere JE. Effect of selective lipid extraction from different body regions on epidermal barrier function. Pharm Res. 2001;18:992–8.

    Article  PubMed  CAS  Google Scholar 

  49. Riviere JE, Brooks JD. Predicting skin permeability from complex chemical mixtures. Toxicol Appl Pharmacol. 2005;208:99–110.

    Article  PubMed  CAS  Google Scholar 

  50. Riviere JE, Brooks JD. Predicting skin permeability from complicated chemical mixtures: dependency of quantitative structure permeability relationships (QPSR) on biology of skin models used. Toxicol Sci. 2011;119:224–32.

    Article  PubMed  CAS  Google Scholar 

  51. Roberts MS, Gierden A, Riviere JE, Monteiro-Riviere NA. Solvents and vehicle effects on the skin. In: Roberts MS, Walters KA, editors. Dermal absorption and toxicity assessment. 2nd ed. New York, NY: Informa Healthcare; 2008. p. 433–47.

    Google Scholar 

  52. Xia XR, Monteiro-Riviere NA, Riviere JE. Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol. 2010;242:29–37.

    Article  PubMed  CAS  Google Scholar 

  53. Dos Anjos JLV, Alonso A. Terpenes increase the partitioning and molecular dynamics of an amphipathic spin label in stratum corneum membranes. Int J Pharm. 2008;350(1–2):103–12.

    Article  PubMed  Google Scholar 

  54. Monteiro-Riviere NA, Inman AO, Erdmann D, Xia X, Riviere JE. Terpene effects on penetration of nanoparticles in human skin. Toxicologist. 2011;20 Suppl 2:462.

    Google Scholar 

  55. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, et al. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect. 2003;111:1202–8.

    Article  PubMed  CAS  Google Scholar 

  56. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 2007;7:155–60.

    Article  PubMed  CAS  Google Scholar 

  57. Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci. 2010;118(1): 140–9.

    Article  PubMed  CAS  Google Scholar 

  58. Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 2011; 123(1):264–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy A. Monteiro-Riviere Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Monteiro-Riviere, N.A. (2013). Skin Penetration of Engineered Nanomaterials. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics