Skip to main content

Nanotechnology for the Diagnosis of Parasitic Infections

  • Chapter
  • First Online:
  • 1987 Accesses

Abstract

Infectious diseases can trigger a large range of clinical symptoms in humans and animals. Most of them are nonspecific signs, especially in their earlier stages, usually rendering differential diagnosis difficult. Many infections also result in cutaneous manifestations, which may present as isolated symptoms as a result of a more complex, or even serious, systemic disorder. In some cases, cutaneous signs may allow for the generation of an accurate diagnosis of disease by facile and direct examination. However, in many cases, the need for additional diagnostic tools and techniques are required. Repeated histopathological analysis of multiple skin samples in cases of equivocal diagnosis leads to significant cost and discomfort to the patient, despite the frequent reliance on clinical findings for diagnosis in dermatology [1]. As such, rapid and specific diagnosis of skin and soft tissues infections require improved diagnostic methods and tools. Ideally, these should be able to provide simple, cost-effective, rapid, specific and sensitive detection, identification and quantification of the etiologic agent. A rapid and accurate diagnosis of infection not only allows prompt initiation of therapy, but also, when resistant strains are detected, allows for a change of therapeutic regimen tailored to the patient’s pathogen profile. In addition, quantitative methods of detection, able to accurately determine the effective burden of a microorganism in host tissues, may constitute an important means to predict disease progression and prognosis. Aesthetic concerns associated with current diagnostic methods must also be taken into account then managing infections. Some diagnostic techniques such as punch and excisional biopsies may result in considerable disfigurement and scarring. New diagnostic approaches based on biosensor technology, especially involving nanotechnological structures, have been developed in all stages of the research cycle from proof-of-concept, to prototype, to early clinical trials. Apart from technical and commercial constraints in developed countries, shifting from lab-based molecular analysis to point-of-care testing faces many ethical concerns and obstacles. Although this is less so for the diagnosis of infectious than genetic diseases [2]. Nanotechnology represents a promising approach to develop and utilize novel and improved tests to diagnose dermatological infections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Murphy MJ. Introduction to molecular diagnostic testing in dermatology and dermatopathology. In: Murphy MJ, editor. Molecular diagnostic in dermatology and dermatopathology. Connecticut, CT: Humana Press; 2011. p. 1–12.

    Chapter  Google Scholar 

  2. Fortina P, Surrey S, Kricka LJ. Molecular diagnostics: hurdles for clinical implementation. Trends Mol Med. 2002;8:264–6.

    Article  PubMed  Google Scholar 

  3. Liles WC, Van Voorhis WC. Fever in travelers to tropical countries. In: Root RK, Waldvogel F, Corey L, Stamm WE, editors. Clinical infectious diseases. A practical approach. New York, NY: Oxford University Press; 1999. p. 859–74.

    Google Scholar 

  4. Bowden RA. Hematopoietic stem cell transplantation. In: Root RK, Waldvogel F, Corey L, Stamm WE, editors. Clinical infectious diseases. A practical approach. New York, NY: Oxford University Press; 1999. p. 829–38.

    Google Scholar 

  5. Sra KK, Torres G, Rady P, Hughes TK, Payne DA, Tyring SK. Molecular diagnosis of infectious diseases in dermatology. J Am Acad Dermatol. 2005;53: 749–65.

    Article  PubMed  Google Scholar 

  6. Kaittanis C, Santra S, Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev. 2010;62:408–23.

    Article  PubMed  CAS  Google Scholar 

  7. Wessagowit V, South AP. Dermatological applications of DNA array technology. Clin Exp Dermatol. 2002;27:485–92.

    Article  PubMed  CAS  Google Scholar 

  8. Jain KK. Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta. 2005;358:37–54.

    Article  PubMed  CAS  Google Scholar 

  9. Nasir A. The future of nanotechnology in dermatology. US Dermatol. 2008;3:9–13.

    Google Scholar 

  10. Hia J, Nasir A. Photonanodermatology: the interface of photobiology, dermatology and nanotechnology. Photodermatol Photoimmunol Photomed. 2011;27:2–9.

    Article  PubMed  CAS  Google Scholar 

  11. Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. 2008;1:17–32.

    CAS  Google Scholar 

  12. Teles FRR, Fonseca LP. Trends in DNA biosensors. Talanta. 2008;77:606–23.

    Article  CAS  Google Scholar 

  13. Hauck TS, Giri S, Gao Y, Chan WCW. Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliv Rev. 2010;62:438–48.

    Article  PubMed  CAS  Google Scholar 

  14. Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.

    Article  PubMed  CAS  Google Scholar 

  15. Ballou B, Ernst LA, Andreko S, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem. 2007;18:389–96.

    Article  PubMed  CAS  Google Scholar 

  16. Oh W-K, Jeong YS, Song J, Jang J. Fluorescent europium-modified polymer nanoparticles for rapid and sensitive anthrax sensors. Biosens Bioelectron. 2011;29:172–7.

    Article  PubMed  CAS  Google Scholar 

  17. Taylor EN, Webster TJ. The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int J Nanomedicine. 2009;4:145–52. Epub 2009 Sep 10. PubMed PMID: 19774113; PubMed Central PMCID: PMC2747349.

    Article  PubMed  CAS  Google Scholar 

  18. Perinoto A, Maki RM, Colhone MC, et al. Biosensors for efficient diagnosis of leishmaniasis: innovations in bioanalytics for a neglected disease. Anal Chem. 2010;82:9763–8.

    Article  PubMed  CAS  Google Scholar 

  19. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol. 2004;22:883–8887.

    Article  PubMed  CAS  Google Scholar 

  20. Xia H, Wang F, Huang Q, et al. Detection of Staphylococcus epidermidis by a quartz crystal microbalance nucleic acid biosensor array using Au nanoparticle signal amplification. Sensors. 2008;8:6453–70.

    Article  CAS  Google Scholar 

  21. Baptista PV, Koziol-Montewka M, Paluch-Oles J, et al. Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem. 2006;52:1433–4.

    Article  PubMed  CAS  Google Scholar 

  22. Lee H, Sun E, Ham D, Weissleder R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med. 2008;14:869–74.

    Article  PubMed  Google Scholar 

  23. Klostranec JM, Xiang Q, Farcas GA, et al. Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett. 2007;7:2812–8.

    Article  PubMed  CAS  Google Scholar 

  24. Stoeva SI, Lee J-S, Thaxton CS, Mirkin CA. Multiplexed DNA detection with barcoded nanoparticle probes. Angew Chem Int Ed. 2006;45:3303–6.

    Article  CAS  Google Scholar 

  25. Gao J, Li L, Ho P-L, et al. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater. 2006;18:3145–8.

    Article  CAS  Google Scholar 

  26. Chirathaworn C, Chantaramalai T, Sereemaspun A, Kongthong N, Suwancharoen D. Detection of Leptospira in urine using anti-Leptospira-coated gold nanoparticles. Comp Immunol Microbiol Infect Dis. 2011;34:31–4.

    Article  PubMed  Google Scholar 

  27. Reddy SB, Mainwaring DE, Al Kobaisi M, Zeephongsekul P, Fecondo JV. Acoustic wave immunosensing of a meningococcal antigen using gold nanoparticle-enhanced mass sensitivity. Biosens Bioelectron. 2012;31:382–7.

    Article  PubMed  CAS  Google Scholar 

  28. Yang H, Li D, He R, et al. A novel quantum dots-based point of care test for syphilis. Nanoscale Res Lett. 2010;5:875–81.

    Article  PubMed  CAS  Google Scholar 

  29. Yang H, Guo Q, He R, et al. A quick and parallel analytical method based on quantum dots labeling for ToRCH-related antibodies. Nanoscale Res Lett. 2009;4:1469–74.

    Article  PubMed  CAS  Google Scholar 

  30. Pereira SV, Bertolino FA, Fernández-Baldo MA, et al. A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. Analyst. 2011;136:4745–51.

    Article  PubMed  CAS  Google Scholar 

  31. Preechakasedkit P, Pinwattana K, Dungchai W, et al. Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosens Bioelectron. 2012;31:562–6.

    Article  PubMed  CAS  Google Scholar 

  32. Tang X, He J, Partin J, Vafai A. Comparative analysis of direct fluorescence, zenon labeling, and quantum dot nanocrystal technology in immunofluorescence staining. J Immunoassay Immunochem. 2010;31:250–7.

    Article  PubMed  CAS  Google Scholar 

  33. Li H, Sun Z, Zhong W, Hao N, Xu D, Chen H-Y. Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Anal Chem. 2010;82:5477–83.

    Article  PubMed  CAS  Google Scholar 

  34. Andrade CAS, Oliveira MDL, de Melo CP, et al. Diagnosis of dengue infection using a modified gold electrode with hybrid organic–inorganic nanocomposite and Bauhinia monandra lectin. J Colloid Interface Sci. 2011;362:517–23.

    Article  PubMed  CAS  Google Scholar 

  35. Naja G, Hrapovic S, Male K, Bouvrette P, Luong JHT. Rapid detection of microorganisms with nanoparticles and electron microscopy. Microsc Res Tech. 2008;71:742–8.

    Article  PubMed  Google Scholar 

  36. Ndieyira JW, Watari M, Barrera AD, et al. Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance. Nat Nanotechnol. 2008;3:691–6.

    Article  PubMed  CAS  Google Scholar 

  37. Mann TS, Mikkelsen SR. Antibiotic susceptibility testing at a screen-printed carbon electrode array. Anal Chem. 2008;80:843–8.

    Article  PubMed  CAS  Google Scholar 

  38. Nath S, Kaittanis C, Tinkham A, Perez JM. Dextran-coated gold nanoparticles for the assessment of antimicrobial susceptibility. Anal Chem. 2008;80:1033–8.

    Article  PubMed  CAS  Google Scholar 

  39. Kaittanis C, Nath S, Perez JM. Rapid nanoparticle-mediated monitoring of bacterial metabolic activity and assessment of antimicrobial susceptibility in blood with magnetic relaxation. PLoS One. 2008;3:e3253.

    Article  PubMed  Google Scholar 

  40. Lu W, Gu D, Chen X, Xiong R, Liu P, Yang N, et al. Application of an oligonucleotide microarray-based nano-amplification technique for the detection of fungal pathogens. Clin Chem Lab Med. 2010;48(10):1507–14.

    Article  PubMed  CAS  Google Scholar 

  41. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, et al. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Anal Chim Acta. 2012;723:1–6.

    Article  PubMed  CAS  Google Scholar 

  42. Perinoto ÂC, Maki RM, Colhone MC, Santos FR, Migliaccio V, Daghastanli KR, et al. Biosensors for efficient diagnosis of leishmaniasis: innovations in bioanalytics for a neglected disease. Anal Chem. 2010;82(23):9763–8.

    Article  PubMed  CAS  Google Scholar 

  43. Moreno M, González VM, Rincón E, Domingo A, Domínguez E. Aptasensor based on the selective electrodeposition of protein-linked gold nanoparticles on screen-printed electrodes. Analyst. 2011;136(9):1810–5.

    Article  PubMed  CAS  Google Scholar 

  44. Nasir A, Cook GA, Donelson JE. Sequences of two kinetoplast minicircle DNAs of Trypanosoma (Nannomonas) congolense. Mol Biochem Parasitol. 1987;24(3):295–300.

    Article  PubMed  CAS  Google Scholar 

  45. Kuboki N, Inoue N, Sakurai T, Di Cello F, Grab DJ, Suzuki H, et al. Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol. 2003;41(12):5517–24.

    Article  PubMed  CAS  Google Scholar 

  46. Reithinger R, Dujardin JC. Molecular diagnosis of leishmaniasis: current status and future applications. J Clin Microbiol. 2007;45(1):21–5.

    Article  PubMed  CAS  Google Scholar 

  47. Takagi H, Itoh M, Kasai S, Yahathugoda TC, Weerasooriya MV, Kimura E. Development of loop-mediated isothermal amplification method for detecting Wuchereria bancrofti DNA in human blood and vector mosquitoes. Parasitol Int. 2011;60(4):493–7.

    Article  PubMed  CAS  Google Scholar 

  48. Cinotti E, Perrot JL, Labeille B, Vercherin P, Chol C, Besson E, Cambazard F. Reflectance confocal microscopy for quantification of Sarcoptes scabiei in Norwegian scabies. J Eur Acad Dermatol Venereol. 2012 May 23. doi:1111/j.1468-3083.2012.04555.x. PubMed PMID: 22621304.

  49. Jayaraj R, Hales B, Viberg L, Pizzuto S, Holt D, Rolland JM, et al. A diagnostic test for scabies: IgE specificity for a recombinant allergen of Sarcoptes scabiei. Diagn Microbiol Infect Dis. 2011;71(4):403–7.

    Article  PubMed  CAS  Google Scholar 

  50. Gaudin JC, Rabesona H, Choiset Y, Yeretssian G, Chobert JM, Sakanyan V, et al. Assessment of the immunoglobulin E-mediated immune response to milk-specific proteins in allergic patients using microarrays. Clin Exp Allergy. 2008;38(4):686–93.

    Article  PubMed  CAS  Google Scholar 

  51. Szalanski AL, Tripodi AD, Austin JW. Multiplex polymerase chain reaction diagnostics of bed bug (Hemiptera: Cimicidae). J Med Entomol. 2011;48(4):937–40.

    Article  PubMed  CAS  Google Scholar 

  52. Juncadella IJ, Anguita J. The immunosuppressive tick salivary protein, Salp15. Adv Exp Med Biol. 2009;666:121–31.

    Article  PubMed  CAS  Google Scholar 

  53. Davey G. Podoconiosis, non-filarial elephantiasis, and lymphology. Lymphology. 2010;43(4):168–77.

    PubMed  CAS  Google Scholar 

  54. Fink DL, Kamgno J, Nutman TB. Rapid molecular assays for specific detection and quantitation of Loa loa microfilaremia. PLoS Negl Trop Dis. 2011;5(8):e1299. doi:10.1371/journal.pntd.0001299.

    Article  PubMed  CAS  Google Scholar 

  55. Fink DL, Fahle GA, Fischer S, Fedorko DF, Nutman TB. Toward molecular parasitologic diagnosis: enhanced diagnostic sensitivity for filarial infections in mobile populations. J Clin Microbiol. 2011;49(1): 42–7.

    Article  PubMed  Google Scholar 

  56. Mehlotra RK, Gray LR, Blood-Zikursh MJ, Kloos Z, Henry-Halldin CN, Tisch DJ, et al. Molecular-based assay for simultaneous detection of four Plasmodium spp. and Wuchereria bancrofti infections. Am J Trop Med Hyg. 2010;82(6):1030–3.

    Article  PubMed  CAS  Google Scholar 

  57. Thanchomnang T, Intapan PM, Lulitanond V, Sangmaneedet S, Chungpivat S, Taweethavonsawat P, et al. Rapid detection of Dirofilaria immitis in mosquito vectors and dogs using a real-time fluorescence resonance energy transfer PCR and melting curve analysis. Vet Parasitol. 2010;168(3–4):255–60.

    Article  PubMed  CAS  Google Scholar 

  58. Nuchprayoon S. DNA-based diagnosis of lymphatic filariasis. Southeast Asian J Trop Med Public Health. 2009;40(5):904–13.

    PubMed  CAS  Google Scholar 

  59. Tamarozzi F, Halliday A, Gentil K, Hoerauf A, Pearlman E, Taylor MJ. Onchocerciasis: the role of Wolbachia bacterial endosymbionts in parasite biology, disease pathogenesis, and treatment. Clin Microbiol Rev. 2011;24(3):459–68. doi:10.1128/CMR.00057-10.

    Article  PubMed  CAS  Google Scholar 

  60. Adjobimey T, Hoerauf A. Induction of immunoglobulin G4 in human filariasis: an indicator of ­immunoregulation. Ann Trop Med Parasitol. 2010;104(6):455–64.

    Article  PubMed  CAS  Google Scholar 

  61. Kron MA, Cichanowicz S, Hendrick A, Liu A, Leykam J, Kuhn LA. Using structural analysis to generate parasite-selective monoclonal antibodies. Protein Sci. 2008;17(6):983–9.

    Article  PubMed  CAS  Google Scholar 

  62. Sasaki T, Kobayashi M, Agui N. Detection of Bartonella quintana from body lice (Anoplura: Pediculidae) infesting homeless people in Tokyo by molecular technique. J Med Entomol. 2002;39(3):427–9.

    Article  PubMed  Google Scholar 

  63. Roux V, Raoult D. Body lice as tools for diagnosis and surveillance of reemerging diseases. J Clin Microbiol. 1999;37(3):596–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Sérgio Rodrigues Ribeiro Teles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Teles, F.S.R.R., da Luz Martins, M., Vieira, M.R., da Fonseca, L.J.P. (2013). Nanotechnology for the Diagnosis of Parasitic Infections. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics