Skip to main content

Nanotechnology in Photoprotection

  • Chapter
  • First Online:

Abstract

Excessive exposure to ultraviolet (UV) radiation induces a wide range of adverse effects such as sunburn, photoaging, photoimmunosuppression, and photocarcinogeneis. Use of sunscreen is an important practice by the public to protect against excessive UV exposure and reduce UV damages. In general, inorganic-based sunscreen composed of mineral UV filters, such as titanium dioxide (TiO2) and zinc oxide (ZnO), work by reflecting and scattering UV radiation. These agents are regarded as safe and effective. Compared to organic UV filters, such as avobenzone and oxybenzone, inorganic filters are less irritating on individuals with sensitive skin and chronic skin disorders. For these reasons, TiO2 and ZnO have been widely recommended as the safest UV filters in sunscreen products. Despite these benefits, older sunscreens containing these ingredients were limited in popularity by their poor cosmetic appearance. Due to the broad particle size distribution and poor dispersive qualities of the TiO2 and ZnO particles, these sunscreens left a white or opaque film, as well as grainy-residue on the skin. The diminished aesthetics of these sunscreens hindered wide acceptance by the public.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mitchnick MA, Fairhurst D, Pinnell SR. Microfine zinc oxide (Z-cote) as a photostable UVA/UVB sunblock agent. J Am Acad Dermatol. 1999;40(1): 85–90.

    Article  PubMed  CAS  Google Scholar 

  2. Therapeutic Goods Administration. A Review of the scientific literature of the safety of nanoparticulate titanium dioxide or zinc oxide in sunscreens. Australian Government Department of Health and Ageing, 2006.

    Google Scholar 

  3. Popov AP, et al. Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J Biomed Opt. 2005;10(6):064037.

    Article  PubMed  Google Scholar 

  4. Cross SE, et al. Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol. 2007;20(3):148–54.

    Article  PubMed  CAS  Google Scholar 

  5. Nohynek GJ, et al. Grey goo on the skin? Nano-technology, cosmetic and sunscreen safety. Crit Rev Toxicol. 2007;37(3):251–77.

    Article  PubMed  CAS  Google Scholar 

  6. Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol. 2009; 61(4):685–92.

    Article  PubMed  CAS  Google Scholar 

  7. Dunford R, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett. 1997;418(1–2):87–90.

    Article  PubMed  CAS  Google Scholar 

  8. Serpone N, Salinaro A, Emeline A. Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA: efforts to limit DNA damage by particle surface modification. Proc SPIE. 2001;4258:86–98.

    Article  CAS  Google Scholar 

  9. Uchino T, et al. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2–UVA treatment. Toxicol In Vitro. 2002;16(5):629–35.

    Article  PubMed  CAS  Google Scholar 

  10. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

    Article  PubMed  CAS  Google Scholar 

  11. Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med. 1997;23(6):851–8.

    Article  PubMed  CAS  Google Scholar 

  12. Dufour EK, et al. Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat Res. 2006;607(2):215–24.

    Article  PubMed  CAS  Google Scholar 

  13. Menzel F, et al. Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instrum Methods Phys Res, Sect B. 2004;219–220(1–4):82–6.

    Article  Google Scholar 

  14. Cai R, et al. Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res. 1992;52(8):2346–8.

    PubMed  CAS  Google Scholar 

  15. Hirakawa K, et al. Photo-irradiated Titanium Dioxide Catalyzes Site Specific DNA Damage via Generation of Hydrogen Peroxide. Free Radic Res. 2004;38(5): 439–47.

    Article  PubMed  CAS  Google Scholar 

  16. Konaka R, et al. Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radic Biol Med. 1999;27(3–4):294–300.

    Article  PubMed  CAS  Google Scholar 

  17. Brezova V, et al. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). J Photochem Photobiol B. 2005;79(2):121–34.

    Article  PubMed  CAS  Google Scholar 

  18. Dodd NJ, Jha AN. Titanium dioxide induced cell damage: a proposed role of the carboxyl radical. Mutat Res. 2009;660(1–2):79–82.

    PubMed  CAS  Google Scholar 

  19. Pflücker F, et al. The human stratum corneum layer: An effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol. 2001;14 Suppl 1:92–7.

    Article  PubMed  Google Scholar 

  20. 20. Livraghi S, et al. Decreasing the oxidative potential of TiO(2) nanoparticles through modification of the surface with carbon: a new strategy for the production of safe UV filters. Chem Commun(Camb), 2011. 46(44):8478–80.

    Article  PubMed  Google Scholar 

  21. Pan Z, et al. Adverse Effects of Titanium Dioxide Nanoparticles on Human Dermal Fibroblasts and How to Protect Cells. Small. 2009;5(4):511–20.

    Article  PubMed  CAS  Google Scholar 

  22. Tan MH, et al. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol. 1996;37(4):185–7.

    Article  PubMed  CAS  Google Scholar 

  23. Mavon A, et al. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol. 2007;20(1):10–20.

    Article  PubMed  CAS  Google Scholar 

  24. European Union’s Scientific Committee on Cosmetic Products and Non-Food Products. Opinion of the scientific committee on cosmetic products and non-food products intended for consumers concerning zinc oxide; 2000 (cited 2012 December 20). http://ec.europa.eu/health/ph_risk/committees/04_sccp/04_sccp_en.htm.

  25. Subedi RK, et al. Recent advances in transdermal drug delivery. Arch Pharm Res. 2010;33(3):339–51.

    Article  PubMed  CAS  Google Scholar 

  26. Zvyagin AV, et al. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt. 2008;13(6):064031.

    Article  PubMed  Google Scholar 

  27. Lademann J, et al. Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol. 2001;14 Suppl 1:17–22.

    PubMed  Google Scholar 

  28. Lademann J, et al. Hair follicles—an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite-Universitatsmedizin Berlin, Germany. Skin Pharmacol Physiol. 2008;21(3):150–5.

    Article  PubMed  CAS  Google Scholar 

  29. Gunther C, et al. Percutaneous absorption of methylprednisolone aceponate following topical application of Advantan lotion on intact, inflamed and stripped skin of male volunteers. Skin Pharmacol Appl Skin Physiol. 1998;11(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  30. Korting HC, et al. Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris. Eur J Clin Pharmacol. 1990;39(4):349–51.

    Article  PubMed  CAS  Google Scholar 

  31. Monteiro-Riviere NA, et al. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 2011;123(1):264–80.

    Article  PubMed  CAS  Google Scholar 

  32. Lademann J, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12(5):247–56.

    Article  PubMed  CAS  Google Scholar 

  33. Schulz J, et al. Distribution of sunscreens on skin. Adv Drug Deliv Rev. 2002;54 Suppl 1:S157–63.

    Article  PubMed  CAS  Google Scholar 

  34. Gottbrath S, Mueller-Goymann CC. Penetration and visualization of titanium dioxide microparticles in human stratum corneum—effect of different formulations on the penetration of titanium dioxide. SOFW J. 2003;129(3):11–7.

    CAS  Google Scholar 

  35. Pirot F, et al. In vitro study of percutaneous absorption, cutaneous bioavailability and bioequivalence of zinc and copper from five topical formulations. Skin Pharmacol. 1996;9(4):259–69.

    Article  PubMed  CAS  Google Scholar 

  36. European Union’s Scientific Committee on Cosmetic Products and Non-Food Products. Opinion of the scientific committee on cosmetic products and non-food products intended for consumers concerning zinc oxide; 2003 (cited 2011 December). Available from: http://ec.europa.eu/health/ph_risk/committees/04_sccp/04_sccp_en.htm.

  37. Lansdown ABG, Taylor A. Zinc and titanium oxides: Promising UV-absorbers but what influence do they have on the intact skin? Int J Cosmet Sci. 1997;19(4):167–72.

    Article  PubMed  CAS  Google Scholar 

  38. Dussert AS, Gooris E, Hemmerle J. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci. 1997;19(3):119–29.

    Article  PubMed  CAS  Google Scholar 

  39. Gontier E, et al. Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology. 2008;2(4):218–31.

    Article  Google Scholar 

  40. Gamer AO, Leibold E, van Ravenzwaay B. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro. 2006;20(3):301–7.

    Article  PubMed  CAS  Google Scholar 

  41. Filipe P, et al. Stratum corneum is an effective barrier to TiO2 and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol. 2009;22(5): 266–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Q. Wang M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, L.L., Tooley, I., Wang, S.Q. (2013). Nanotechnology in Photoprotection. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics