Skip to main content

Augmenting the Skin Immune System

  • Chapter
  • First Online:
Book cover Nanotechnology in Dermatology

Abstract

Manipulation of the immune system for clinical dermatology can be divided into three categories: augmentation of immunity, suppression of immunity, or alteration of immunity such as induction of tolerance. Current methods for augmenting immunity include vaccination, medications, or interventions such as stem cell transplantation. Traditional vaccination relies upon administration of either antigens, inactivated or attenuated, or live organisms, with or without adjuvants. In the case of inherited immune deficiencies, gene therapy or bone marrow transplants have been performed. In the case of acquired immune deficiencies due to infection (such as human immunodeficiency virus), drugs directed at the causative organism have been used. In the case of acquired immune deficiency due to malignancy, antitumor medications have been indicated. While these therapies tend to be effective for their respective indications, they may lack efficiency, may lack a robust and sustained change in immune status, or may lack specificity and entail significant side effects or unintended effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imbimbo BP, et al. Solanezumab for the treatment of mild-to-moderate Alzheimer’s disease. Expert Rev Clin Immunol. 2012;8(2):135–49.

    PubMed  CAS  Google Scholar 

  2. Arigoni M, et al. A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors. Angiogenesis. 2012;15(2):305–16.

    PubMed  CAS  Google Scholar 

  3. Thapa P, et al. Nanoparticle formulated alpha-galactosylceramide activates NKT cells without inducing anergy. Vaccine. 2009;27(25–26):3484–8.

    PubMed  CAS  Google Scholar 

  4. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    PubMed  CAS  Google Scholar 

  5. Ascierto PA, Marincola FM, Ribas A. Anti-CTLA4 monoclonal antibodies: the past and the future in clinical application. J Transl Med. 2011;9:196.

    PubMed  CAS  Google Scholar 

  6. Marin GH, et al. Exploratory study on the effects of biodegradable nanoparticles with drugs on malignant B cells and on a human/mouse model of Burkitt lymphoma. Curr Clin Pharmacol. 2010;5(4):246–50.

    PubMed  CAS  Google Scholar 

  7. Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol. 2012;132(3 Pt 2):887–95.

    PubMed  CAS  Google Scholar 

  8. Nakatsuji T, et al. Vaccination targeting a surface sialidase of P. acnes: implication for new treatment of acne vulgaris. PLoS One. 2008;3(2):e1551.

    PubMed  Google Scholar 

  9. Wong DA, et al. Cytokine profiles in spontaneously regressing basal cell carcinomas. Br J Dermatol. 2000;143(1):91–8.

    PubMed  CAS  Google Scholar 

  10. Criscione VD, et al. Actinic keratoses: natural history and risk of malignant transformation in the Veterans Affairs Topical Tretinoin Chemoprevention Trial. Cancer. 2009;115(11):2523–30.

    PubMed  Google Scholar 

  11. Friedman KM, et al. Tumor-specific CD4+ melanoma tumor-infiltrating lymphocytes. J Immunother. 2012;35(5):400–8.

    PubMed  CAS  Google Scholar 

  12. Lazar-Molnar E, et al. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine. 2000;12(6):547–54.

    PubMed  CAS  Google Scholar 

  13. Macpherson N, Lamrock E, Watt G. Effect of inflammation on positive margins of basal cell carcinomas. Australas J Dermatol. 2010;51(2):95–8.

    PubMed  Google Scholar 

  14. Maguire Jr HC, et al. Phase I study of R24 in patients with metastatic melanoma including evaluation of immunologic parameters. Cancer Biother Radiopharm. 1998;13(1):13–23.

    PubMed  CAS  Google Scholar 

  15. Cafardi JA, Elmets CA. T4 endonuclease V: review and application to dermatology. Expert Opin Biol Ther. 2008;8(6):829–38.

    PubMed  CAS  Google Scholar 

  16. Stone GW, et al. Nanoparticle-delivered multimeric soluble CD40L DNA combined with toll-Like Receptor agonists as a treatment for melanoma. PLoS One. 2009;4(10):e7334.

    PubMed  Google Scholar 

  17. Tittarelli A, et al. Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunol Immunother. 2012 May 3. [Epub ahead of print] PubMed PMID: 22552381.

    Google Scholar 

  18. Cheng YS, Xu F. Anticancer function of polyinosinic-­polycytidylic acid. Cancer Biol Ther. 2011;10(12):1219–23.

    PubMed  Google Scholar 

  19. Tormo D, et al. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res. 2006;66(10):5427–35.

    PubMed  CAS  Google Scholar 

  20. Tarhini AA, et al. Safety and immunogenicity of vaccination With MART-1 (26–35, 27L), gp100 (209–217, 210M), and tyrosinase (368–376, 370D) in adjuvant with PF-3512676 and GM-CSF in metastatic melanoma. J Immunother. 2012;35(4):359–66.

    PubMed  CAS  Google Scholar 

  21. Speiser DE, et al. Memory and effector CD8 T-cell responses after nanoparticle vaccination of melanoma patients. J Immunother. 2010;33(8):848–58.

    PubMed  CAS  Google Scholar 

  22. Li N, et al. Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo. Int J Nanomedicine. 2011;6:3241–50.

    PubMed  CAS  Google Scholar 

  23. Ni X, Duvic M. Dendritic cells and cutaneous T-cell lymphomas. G Ital Dermatol Venereol. 2011;146(2):103–13.

    PubMed  CAS  Google Scholar 

  24. Kim YH, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood. 2012;119(2):355–63.

    PubMed  Google Scholar 

  25. Richardson SK, et al. Bexarotene blunts malignant T-cell chemotaxis in Sezary syndrome: reduction of chemokine receptor 4-positive lymphocytes and decreased chemotaxis to thymus and activation-regulated chemokine. Am J Hematol. 2007;82(9):792–7.

    PubMed  CAS  Google Scholar 

  26. Prince HM, Dickinson M. Romidepsin for cutaneous T-cell lymphoma. Clin Cancer Res. 2012;18(13):3509–15.

    PubMed  CAS  Google Scholar 

  27. Degenhardt Y, et al. Distinct MHC gene expression patterns during progression of melanoma. Genes Chromosomes Cancer. 2010;49(2):144–54.

    PubMed  CAS  Google Scholar 

  28. Baumgartner JM, et al. DC maturation and function are not altered by melanoma-derived immunosuppressive soluble factors. J Surg Res. 2012;176(1):301–8.

    PubMed  CAS  Google Scholar 

  29. McCarter M, et al. Melanoma skews dendritic cells to facilitate a T helper 2 profile. Surgery. 2005;138(2):321–8.

    PubMed  Google Scholar 

  30. McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther. 2002;1(5):459–65.

    PubMed  Google Scholar 

  31. Melnikova VO, Bar-Eli M. Bioimmunotherapy for melanoma using fully human antibodies targeting MCAM/MUC18 and IL-8. Pigment Cell Res. 2006;19(5):395–405.

    PubMed  CAS  Google Scholar 

  32. Bradbury PA, Shepherd FA. Immunotherapy for lung cancer. J Thorac Oncol. 2008;3(6 Suppl 2):S164–70.

    PubMed  Google Scholar 

  33. Wondimu A, et al. Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice. Cancer Immunol Immunother. 2008;57(7):1079–89.

    PubMed  CAS  Google Scholar 

  34. Deng K, et al. Synthesis of QS-21-xylose: establishment of the immunopotentiating activity of synthetic QS-21 adjuvant with a melanoma vaccine. Angew Chem Int Ed Engl. 2008;47(34):6395–8.

    PubMed  CAS  Google Scholar 

  35. Randazzo M, et al. Active-specific immunotherapy of human cancers with the heat shock protein Gp96-revisited. Int J Cancer. 2012;130(10):2219–31.

    PubMed  CAS  Google Scholar 

  36. Hersey P. Active immunotherapy with viral lysates of micrometastases following surgical removal of high risk melanoma. World J Surg. 1992;16(2):251–60.

    PubMed  CAS  Google Scholar 

  37. Hersey P. Evaluation of vaccinia viral lysates as therapeutic vaccines in the treatment of melanoma. Ann N Y Acad Sci. 1993;690:167–77.

    PubMed  CAS  Google Scholar 

  38. Van Nuffel AM, et al. Epitope and HLA-type independent monitoring of antigen-specific T-cells after treatment with dendritic cells presenting full-length tumor antigens. J Immunol Methods. 2012;377(1–2):23–36.

    PubMed  Google Scholar 

  39. van Broekhoven CL, et al. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res. 2004;64(12):4357–65.

    PubMed  Google Scholar 

  40. Wicki A, et al. Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res. 2012;18(2):454–64.

    PubMed  CAS  Google Scholar 

  41. Debierre-Grockiego F. Glycolipids are potential targets for protozoan parasite diseases. Trends Parasitol. 2010;26(8):404–11.

    PubMed  CAS  Google Scholar 

  42. Kannagi R, et al. Current relevance of incomplete synthesis and neo-synthesis for cancer-associated alteration of carbohydrate determinants—Hakomori’s concepts revisited. Biochim Biophys Acta. 2008;1780(3):525–31.

    PubMed  CAS  Google Scholar 

  43. Livingston PO. Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside-KLH conjugate vaccines. Immunol Rev. 1995;145:147–66.

    PubMed  CAS  Google Scholar 

  44. Ingale S, Buskas T, Boons GJ. Synthesis of glyco(lipo)peptides by liposome-mediated native chemical ligation. Org Lett. 2006;8(25):5785–8.

    PubMed  CAS  Google Scholar 

  45. Ingale S, et al. Robust immune responses elicited by a fully synthetic three-component vaccine. Nat Chem Biol. 2007;3(10):663–7.

    PubMed  CAS  Google Scholar 

  46. Ingale S, et al. Increasing the antigenicity of synthetic tumor-associated carbohydrate antigens by targeting Toll-like receptors. Chembiochem. 2009;10(3):455–63.

    PubMed  CAS  Google Scholar 

  47. Ebisawa I. The encounter of Gaston Ramon (1886–1963) with formalin: a biographical study of a great scientist. Kitasato Arch Exp Med. 1987;60(3):55–70.

    PubMed  CAS  Google Scholar 

  48. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–107.

    PubMed  CAS  Google Scholar 

  49. Schijns VE, Lavelle EC. Trends in vaccine adjuvants. Expert Rev Vaccines. 2011;10(4):539–50.

    PubMed  CAS  Google Scholar 

  50. Sharp FA, et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci U S A. 2009;106(3):870–5.

    PubMed  CAS  Google Scholar 

  51. Stanberry LR. Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines. Herpes. 2004;11 Suppl 3:161A–9.

    PubMed  Google Scholar 

  52. Schauner S, Lyon C. Bivalent HPV recombinant vaccine (Cervarix) for the prevention of cervical cancer. Am Fam Physician. 2010;82(12):1541–2.

    PubMed  Google Scholar 

  53. Tan A, De La Pena H, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine. 2010;5:889–900.

    PubMed  CAS  Google Scholar 

  54. Bowman BN, et al. Improving reverse vaccinology with a machine learning approach. Vaccine. 2011;29(45):8156–64.

    PubMed  Google Scholar 

  55. Dormitzer PR, Ulmer JB, Rappuoli R. Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol. 2008;26(12):659–67.

    PubMed  CAS  Google Scholar 

  56. Palumbo A, et al. A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels. Br J Cancer. 2011;104(7):1106–15.

    PubMed  CAS  Google Scholar 

  57. Palumbo E, et al. Antigen identification starting from the genome: a “Reverse Vaccinology” approach applied to MenB. Methods Mol Biol. 2012;799:361–403.

    PubMed  CAS  Google Scholar 

  58. Andre F, et al. Exosomes for cancer immunotherapy. Ann Oncol. 2004;15 Suppl 4:iv141–4.

    PubMed  Google Scholar 

  59. Kooijmans SA, et al. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine. 2012;7:1525–41.

    PubMed  CAS  Google Scholar 

  60. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology. 2011;9:55.

    PubMed  CAS  Google Scholar 

  61. Kagnoff MF. Oral tolerance: mechanisms and possible role in inflammatory joint diseases. Baillieres Clin Rheumatol. 1996;10(1):41–54.

    PubMed  CAS  Google Scholar 

  62. Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol. 2012;5(3):232–9.

    PubMed  CAS  Google Scholar 

  63. Salyaev RK, Rigano MM, Rekoslavskaya NI. Development of plant-based mucosal vaccines against widespread infectious diseases. Expert Rev Vaccines. 2010;9(8):937–46.

    PubMed  CAS  Google Scholar 

  64. Rigano MM, et al. Plants as biofactories for the production of subunit vaccines against bio-security-related bacteria and viruses. Vaccine. 2009;27(25–26):3463–6.

    PubMed  CAS  Google Scholar 

  65. Balmelli C, et al. Nasal immunization of mice with human papillomavirus type 16 virus-like particles elicits neutralizing antibodies in mucosal secretions. J Virol. 1998;72(10):8220–9.

    PubMed  CAS  Google Scholar 

  66. Cheng C, et al. Induction of protective immunity by vaccination against Chlamydia trachomatis using the major outer membrane protein adjuvanted with CpG oligodeoxynucleotide coupled to the nontoxic B subunit of cholera toxin. Vaccine. 2009;27(44):6239–46.

    PubMed  CAS  Google Scholar 

  67. Tengvall S, et al. CpG oligodeoxynucleotide augments HSV-2 glycoprotein D DNA vaccine efficacy to generate T helper 1 response and subsequent protection against primary genital herpes infection in mice. J Reprod Immunol. 2005;68(1–2):53–69.

    PubMed  CAS  Google Scholar 

  68. Gittard SD, et al. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. Faraday Discuss 2011;149:171–85; discussion 227–45.

    Google Scholar 

  69. Nasir A. Nanotechnology in vaccine development: a step forward. J Invest Dermatol. 2009;129(5):1055–9.

    PubMed  CAS  Google Scholar 

  70. Liard C, et al. Targeting of HIV-p24 particle-based vaccine into differential skin layers induces distinct arms of the immune responses. Vaccine. 2011;29(37):6379–91.

    PubMed  CAS  Google Scholar 

  71. Mahe B, et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol. 2009;129(5):1156–64.

    PubMed  CAS  Google Scholar 

  72. Badran MM, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36(4–5):511–23.

    PubMed  CAS  Google Scholar 

  73. Kupper TS. Old and new: recent innovations in vaccine biology and skin T cells. J Invest Dermatol. 2012;132(3 Pt 2):829–34.

    PubMed  CAS  Google Scholar 

  74. Degim IT, Burgess DJ, Papadimitrakopoulos F. Carbon nanotubes for transdermal drug delivery. J Microencapsul. 2010;27(8):669–81.

    PubMed  CAS  Google Scholar 

  75. Wu J, et al. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc Natl Acad Sci U S A. 2010;107(26):11698–702.

    PubMed  CAS  Google Scholar 

  76. Im JS, Bai B, Lee YS. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials. 2010;31(6):1414–9.

    PubMed  CAS  Google Scholar 

  77. Miyazawa M, et al. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci. 2010;101(2):433–9.

    PubMed  CAS  Google Scholar 

  78. Mochimaru H, et al. Suppression of choroidal neovascularization by dendritic cell vaccination targeting VEGFR2. Invest Ophthalmol Vis Sci. 2007;48(10):4795–801.

    PubMed  Google Scholar 

  79. Lori F. DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS. Expert Rev Vaccines. 2011;10(10):1371–84.

    PubMed  CAS  Google Scholar 

  80. Wang YS, et al. Immunity against tumor angiogenesis induced by a fusion vaccine with murine beta-defensin 2 and mFlk-1. Clin Cancer Res. 2007;13(22 Pt 1):6779–87.

    PubMed  CAS  Google Scholar 

  81. Frech SA, et al. Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet. 2008;371(9629):2019–25.

    PubMed  CAS  Google Scholar 

  82. Frolov VG, et al. Transcutaneous delivery and thermostability of a dry trivalent inactivated influenza vaccine patch. Influenza Other Respi Viruses. 2008;2(2):53–60.

    PubMed  CAS  Google Scholar 

  83. Frech SA, et al. Improved immune responses to influenza vaccination in the elderly using an immunostimulant patch. Vaccine. 2005;23(7):946–50.

    PubMed  CAS  Google Scholar 

  84. Quan FS, et al. Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. J Control Release. 2010;147(3):326–32.

    PubMed  CAS  Google Scholar 

  85. Kreiter S, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010;70(22):9031–40.

    PubMed  CAS  Google Scholar 

  86. Manolova V, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–13.

    PubMed  CAS  Google Scholar 

  87. Kobiasi MA, et al. Control of size dispersity of chitosan biopolymer microparticles and nanoparticles to influence vaccine trafficking and cell uptake. J Biomed Mater Res A. 2012;100(7):1859–67.

    PubMed  Google Scholar 

  88. Senti G, et al. Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. J Allergy Clin Immunol. 2012;129(5):1290–6.

    PubMed  CAS  Google Scholar 

  89. Besterman JM, Low RB. Endocytosis: a review of mechanisms and plasma membrane dynamics. Biochem J. 1983;210(1):1–13.

    PubMed  CAS  Google Scholar 

  90. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89(8):836–43.

    PubMed  CAS  Google Scholar 

  91. Meyer C, et al. Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol. 2012;9(1):67–80.

    PubMed  CAS  Google Scholar 

  92. Zaki NM, Tirelli N. Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv. 2010;7(8):895–913.

    PubMed  CAS  Google Scholar 

  93. De Temmerman ML, et al. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today. 2011;16(13–14):569–82.

    PubMed  Google Scholar 

  94. Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol. 2009;667:111–23.

    PubMed  CAS  Google Scholar 

  95. Barry M, Cooper C. Review of hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine safety and efficacy. Expert Opin Biol Ther. 2007;7(11):1731–7.

    PubMed  CAS  Google Scholar 

  96. Vandepapeliere P, et al. Vaccine adjuvant systems containing monophosphoryl lipid A and QS21 induce strong and persistent humoral and T cell responses against hepatitis B surface antigen in healthy adult volunteers. Vaccine. 2008;26(10):1375–86.

    PubMed  CAS  Google Scholar 

  97. Lell B, et al. A randomized trial assessing the safety and immunogenicity of AS01 and AS02 adjuvanted RTS, S malaria vaccine candidates in children in Gabon. PLoS One. 2009;4(10):e7611.

    PubMed  Google Scholar 

  98. Yang D, et al. [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano. 2010;4(2):1178–86.

    PubMed  CAS  Google Scholar 

  99. Cech PG, et al. Virosome-formulated Plasmodium falciparum AMA-1 & CSP derived peptides as malaria vaccine: randomized phase 1b trial in semi-immune adults & children. PLoS One. 2011;6(7):e22273.

    PubMed  CAS  Google Scholar 

  100. Garcia A, et al. Microfabricated engineered particle systems for respiratory drug delivery and other pharmaceutical applications. J Drug Deliv. 2012;2012:941243.

    PubMed  Google Scholar 

  101. Agnandji ST, et al. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365(20):1863–75.

    PubMed  Google Scholar 

  102. Gagnon R, et al. Safe vaccination of patients with egg allergy with an adjuvanted pandemic H1N1 vaccine. J Allergy Clin Immunol. 2010;126(2):317–23.

    PubMed  CAS  Google Scholar 

  103. Rubinstein E, et al. The responses of Aboriginal Canadians to adjuvanted pandemic (H1N1) 2009 influenza vaccine. CMAJ. 2011;183(13):E1033–7.

    PubMed  Google Scholar 

  104. Cooper C, et al. High-level immunogenicity is achieved vaccine with adjuvanted pandemic H1N1(2009) and improved with booster dosing in a randomized trial of HIV-infected adults. HIV Clin Trials. 2012;13(1):23–32.

    PubMed  CAS  Google Scholar 

  105. Tulic MK, et al. Local induction of a specific Th1 immune response by allergen linked immunostimulatory DNA in the nasal explants of ragweed-allergic subjects. Allergol Int. 2009;58(4):565–72.

    PubMed  CAS  Google Scholar 

  106. Hofmann MA, et al. Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother. 2008;31(5):520–7.

    PubMed  CAS  Google Scholar 

  107. Molenkamp BG, et al. Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res. 2007;13(10):2961–9.

    PubMed  CAS  Google Scholar 

  108. Cerritelli S, Velluto D, Hubbell JA. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules. 2007;8(6):1966–72.

    PubMed  CAS  Google Scholar 

  109. Hegyi Z, et al. Vitamin D analog calcipotriol suppresses the Th17 cytokine-induced proinflammatory S100 “alarmins” psoriasin (S100A7) and koebnerisin (S100A15) in psoriasis. J Invest Dermatol. 2012;132(5):1416–24.

    PubMed  CAS  Google Scholar 

  110. Deguchi E, et al. Topical vitamin D3 analogues induce thymic stromal lymphopoietin and cathelicidin in psoriatic skin lesions. Br J Dermatol. 2012;167(1):77–84.

    Google Scholar 

  111. McInturff JE, et al. Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J Invest Dermatol. 2005;125(2):256–63.

    PubMed  CAS  Google Scholar 

  112. Simanski M, et al. Antimicrobial RNases in cutaneous defense. J Innate Immun. 2012;4(3):241–7.

    PubMed  CAS  Google Scholar 

  113. Schittek B. The multiple facets of dermcidin in cell survival and host defense. J Innate Immun. 2012;4(4):349–60.

    PubMed  CAS  Google Scholar 

  114. Hofmann SC, et al. Expression of innate defense antimicrobial peptides in hidradenitis suppurativa. J Am Acad Dermatol. 2012;66(6):966–74.

    PubMed  CAS  Google Scholar 

  115. Dombrowski Y, Schauber J. Cathelicidin LL-37: a defense molecule with a potential role in psoriasis pathogenesis. Exp Dermatol. 2012;21(5):327–30.

    PubMed  CAS  Google Scholar 

  116. Brandelli A. Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev Med Chem. 2012;12(8):731–41.

    PubMed  CAS  Google Scholar 

  117. Nguyen DN, et al. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc Natl Acad Sci USA. 2012;109(14):E797–803.

    PubMed  CAS  Google Scholar 

  118. Williams RL, et al. Synthetic decapeptide reduces bacterial load and accelerates healing in the wounds of restraint-stressed mice. Brain Behav Immun. 2012;26(4):588–96.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Nasir M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nasir, A., Gaspari, A. (2013). Augmenting the Skin Immune System. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics