Skip to main content

Diagnosis and the Skin Immune System

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

The traditional means of diagnosis of inflammatory skin diseases include physical examination, diagnostic tests such as skin biopsy for histology and immunofluorescence, and a variety of special serologic assays. Tools and techniques utilizing nanotechnology are designed to utilize less material; be minimally invasive; and offer rapid, sensitive, and specific results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, et al. Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging. Nanotechnology. 2012;23(9):095501.

    Article  PubMed  Google Scholar 

  2. Welsher K, et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol. 2009;4(11):773–80.

    Article  PubMed  CAS  Google Scholar 

  3. Erogbogbo F, et al. Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem. 2011;22(6):1081–8.

    Article  PubMed  CAS  Google Scholar 

  4. Haas P, et al. Fast quantitative single-molecule detection at ultralow concentrations. Anal Chem. 2010;82(14):6299–302.

    Article  PubMed  CAS  Google Scholar 

  5. Mogensen M, et al. Optical coherence tomography for imaging of skin and skin diseases. Semin Cutan Med Surg. 2009;28(3):196–202.

    Article  PubMed  CAS  Google Scholar 

  6. Zulfakar MH, et al. In vivo response of GsdmA3Dfl/+ mice to topically applied anti-psoriatic agents: effects on epidermal thickness, as determined by optical coherence tomography and H&E staining. Exp Dermatol. 2011;20(3):269–72.

    Article  PubMed  Google Scholar 

  7. Aydin SZ, et al. Optical coherence tomography: a new tool to assess nail disease in psoriasis? Dermatology. 2011;222(4):311–3.

    Article  PubMed  Google Scholar 

  8. Buder K, Knuschke P, Wozel G. Evaluation of methylprednisolone aceponate, tacrolimus and combination thereof in the psoriasis plaque test using sum score, 20-MHz-ultrasonography and optical coherence tomography. Int J Clin Pharmacol Ther. 2010;48(12):814–20.

    PubMed  CAS  Google Scholar 

  9. Egawa M, et al. In vivo characterization of the structure and components of lesional psoriatic skin from the observation with Raman spectroscopy and optical coherence tomography: a pilot study. J Dermatol Sci. 2010;57(1):66–9.

    Article  PubMed  Google Scholar 

  10. Lu W, et al. Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res. 2009;15(3):876–86.

    Article  PubMed  CAS  Google Scholar 

  11. Pastor F, et al. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther. 2011;19(10):1878–86.

    Article  PubMed  CAS  Google Scholar 

  12. Maclaughlin CM. et al. Evaluation of SERS labeling of CD20 on CLL cells using optical microscopy and fluorescence flow cytometry. Nanomedicine. 2012

    Google Scholar 

  13. Donnelly RF, et al. Microneedle-mediated intradermal nanoparticle delivery: potential for enhanced local administration of hydrophobic pre-formed photosensitisers. Photodiagnosis Photodyn Ther. 2010;7(4):222–31.

    Article  PubMed  CAS  Google Scholar 

  14. Wu J, et al. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc Natl Acad Sci U S A. 2010;107(26):11698–702.

    Article  PubMed  CAS  Google Scholar 

  15. Singh R, Nalwa HS. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol. 2011;7(4):489–503.

    Article  PubMed  CAS  Google Scholar 

  16. Degim IT, Burgess DJ, Papadimitrakopoulos F. Carbon nanotubes for transdermal drug delivery. J Microencapsul. 2010;27(8):669–81.

    Article  PubMed  CAS  Google Scholar 

  17. Al-Qallaf B, Das DB. Optimizing microneedle arrays to increase skin permeability for transdermal drug delivery. Ann N Y Acad Sci. 2009;1161:83–94.

    Article  PubMed  Google Scholar 

  18. Badran MM, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller) in vitro: dependency on needle size and applied formulation. Eur J Pharm Sci. 2009;36(4–5):511–23.

    Article  PubMed  CAS  Google Scholar 

  19. Bal SM, et al. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. J Control Release. 2010;147(2):218–24.

    Article  PubMed  CAS  Google Scholar 

  20. Chen H, et al. Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release. 2009;139(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  21. Donnelly RF. Re: microneedle-mediated intradermal delivery of 5-aminolevulinic acid. J Control Release. 2008;129(3):153.

    Article  PubMed  CAS  Google Scholar 

  22. Donnelly RF, et al. Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem Photobiol. 2009;85(1):195–204.

    Article  PubMed  CAS  Google Scholar 

  23. Donnelly RF, et al. Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy. J Control Release. 2008;129(3):154–62.

    Article  PubMed  CAS  Google Scholar 

  24. Donnelly RF, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513–22.

    Article  PubMed  CAS  Google Scholar 

  25. Farnworth TK, et al. Comparison of skin necrosis in rats by using a new microneedle electrocautery, standard-size needle electrocautery, and the Shaw hemostatic scalpel. Ann Plast Surg. 1993;31(2):164–7.

    Article  PubMed  CAS  Google Scholar 

  26. Miller PR, et al. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta. 2012;88:739–42.

    Article  PubMed  CAS  Google Scholar 

  27. Windmiller JR, et al. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst. 2011;136(9):1846–51.

    Article  PubMed  CAS  Google Scholar 

  28. Zijlstra P, Paulo PM, Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol. 2012;7(6):379–82.

    Article  PubMed  CAS  Google Scholar 

  29. Platt M, et al. Aptamer evolution for array-based diagnostics. Anal Biochem. 2009;390(2):203–5.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang L, et al. Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene. Analyst. 2012;137(10):2415–20.

    Article  PubMed  CAS  Google Scholar 

  31. Gold L, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 2010;5(12):e15004.

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Lee HJ, Corn RM. Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging. Nucleic Acids Res. 2006;34(22):6416–24.

    Article  PubMed  CAS  Google Scholar 

  33. Potuckova L, et al. Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA. J Immunol Methods. 2011;371(1–2):38–47.

    Article  PubMed  CAS  Google Scholar 

  34. Jensen GC, et al. Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys Chem Chem Phys. 2011;13(11):4888–94.

    Article  PubMed  CAS  Google Scholar 

  35. Liu Y, et al. Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal Chem. 2011;83(21):8286–92.

    Article  PubMed  CAS  Google Scholar 

  36. Simion M, et al. Detection of human papilloma viruses using nanostructurated silicon support in microarray technology. J Nanosci Nanotechnol. 2011;11(10):9102–9.

    Article  PubMed  CAS  Google Scholar 

  37. Kreuter A, et al. Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. J Am Acad Dermatol. 2011;65(1):125–33.

    Article  PubMed  CAS  Google Scholar 

  38. Zelada-Guillen GA, et al. Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron. 2012;31(1):226–32.

    Article  PubMed  CAS  Google Scholar 

  39. Ellinghaus D, et al. Combined analysis of genome-wide association studies for Crohn disease and psoriasis identifies seven shared susceptibility loci. Am J Hum Genet. 2012;90(4):636–47.

    Article  PubMed  CAS  Google Scholar 

  40. Botti E, et al. Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas. Proc Natl Acad Sci U S A. 2011;108(33):13710–5.

    Article  PubMed  CAS  Google Scholar 

  41. Mellmann A, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One. 2011;6(7):e22751.

    Article  PubMed  CAS  Google Scholar 

  42. Rothberg JM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.

    Article  PubMed  CAS  Google Scholar 

  43. Elliott AM, et al. Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. J Biomol Tech. 2012;23(1):24–30.

    Article  PubMed  Google Scholar 

  44. Teste B, et al. Microchip integrating magnetic nanoparticles for allergy diagnosis. Lab Chip. 2011;11(24):4207–13.

    Article  PubMed  CAS  Google Scholar 

  45. Kim JK, et al. Molecular imaging of a cancer-­targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials. 2012;33(1):207–17.

    Article  PubMed  CAS  Google Scholar 

  46. Dausse E, et al. HAPIscreen, a method for high-throughput aptamer identification. J Nanobiotechnology. 2011;9:25.

    Article  PubMed  CAS  Google Scholar 

  47. Katoh Y, Katoh M. Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review). Int J Mol Med. 2008;22(3):271–5.

    PubMed  CAS  Google Scholar 

  48. Bharadwaj M, et al. Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu Rev Pharmacol Toxicol. 2012;52:401–31.

    Article  PubMed  CAS  Google Scholar 

  49. Wei CY, et al. A recent update of pharmacogenomics in drug-induced severe skin reactions. Drug Metab Pharmacokinet. 2012;27(1):132–41.

    Article  PubMed  CAS  Google Scholar 

  50. Norcross MA, et al. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS. 2012;26(11):F21–9.

    Article  PubMed  CAS  Google Scholar 

  51. Chung WH, Hung SI. Recent advances in the genetics and immunology of Stevens-Johnson syndrome and toxic epidermal necrosis. J Dermatol Sci. 2012;66(3):190–6.

    Article  PubMed  CAS  Google Scholar 

  52. Unger WW, et al. Discovery of low-affinity preproinsulin epitopes and detection of autoreactive CD8 T-cells using combinatorial MHC multimers. J Autoimmun. 2011;37(3):151–9.

    Article  PubMed  CAS  Google Scholar 

  53. DeNardo GL, et al. Nanomolecular HLA-DR10 antibody mimics: a potent system for molecular targeted therapy and imaging. Cancer Biother Radiopharm. 2008;23(6):783–96.

    Article  PubMed  CAS  Google Scholar 

  54. Amiri H, Mahmoudi M, Lascialfari A. Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale. 2011;3(3):1022–30.

    Article  PubMed  CAS  Google Scholar 

  55. Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44(10):1061–70.

    Article  PubMed  CAS  Google Scholar 

  56. Gittard SD. et al. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles. Faraday Discuss. 2011;149:171–85; discussion 227–45

    Google Scholar 

  57. Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res. 2011;44(10):1071–9.

    Article  PubMed  CAS  Google Scholar 

  58. Yoo D. et al. Theranostic magnetic nanoparticles. Acc Chem Res. 2011

    Google Scholar 

  59. Li X, et al. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials. 2011;32(10):2540–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Nasir MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nasir, A., Gaspari, A. (2013). Diagnosis and the Skin Immune System. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics