Skip to main content

The Skin Immune System

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

The skin is the largest organ in the body. It serves many functions, including thermoregulation, endocrine homeostasis, and transduction of environmental stimuli. The latter can be from simple registering of heat and cold to photoreception [1] or to the complex haptic processing required to read Braille. The skin actively and passively defends against chemical, thermal, electrical, radioactive, physical, and other environmental and microbial insults. The latter defenses fall under the broad purview of the skin immune system. Nanotechnology exploits the unique properties of matter on the nanoscale to selectively target the skin immune system, either for the purposes of augmenting immunity, in the case of immunodeficiency or in generating an immune response against a tumor or pathogen, or for the purposes of selectively inhibiting the immune system, for example, to treat autoimmune disease or prevent the rejection of a grafted organ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xiang Y, et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature. 2010;468(7326):921–6.

    Article  PubMed  CAS  Google Scholar 

  2. Dahl MV. Dermatophytosis and the immune response. J Am Acad Dermatol. 1994;31(3 Pt 2):S34–41.

    Article  PubMed  CAS  Google Scholar 

  3. Vemula PK, Anderson RR, Karp JM. Animal models for nickel allergy. Nat Nanotechnol. 2011;6(9):533.

    Article  CAS  Google Scholar 

  4. Vemula PK, Anderson RR, Karp JM. Nanoparticles reduce nickel allergy by capturing metal ions. Nat Nanotechnol. 2011;6(5):291–5.

    Article  PubMed  CAS  Google Scholar 

  5. Garcia Bartels N, et al. Effect of standardized skin care regimens on neonatal skin barrier function in different body areas. Pediatr Dermatol. 2010;27(1):1–8.

    Article  PubMed  Google Scholar 

  6. Oyoshi MK, et al. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol. 2009;102:135–226.

    Article  PubMed  CAS  Google Scholar 

  7. Nakatsuji T, Gallo RL. Antimicrobial peptides: old molecules with new ideas. J Invest Dermatol. 2012;132(3 Pt 2):887–95.

    Article  PubMed  CAS  Google Scholar 

  8. Ozdemir M, et al. Serum leptin, adiponectin, resistin and ghrelin levels in psoriatic patients treated with cyclosporin. J Dermatol. 2012;39(5):443–8.

    Article  PubMed  CAS  Google Scholar 

  9. Gerdes S, et al. Leptin, adiponectin, visfatin and retinol-binding protein-4—mediators of comorbidities in patients with psoriasis? Exp Dermatol. 2012;21(1):43–7.

    Article  PubMed  CAS  Google Scholar 

  10. Arck PC, et al. Neuroimmunology of stress: skin takes center stage. J Invest Dermatol. 2006;126(8):1697–704.

    Article  PubMed  CAS  Google Scholar 

  11. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.

    PubMed  CAS  Google Scholar 

  12. Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Invest Dermatol. 2012;132(3 Pt 2):933–9.

    Article  PubMed  CAS  Google Scholar 

  13. Bilbo SD, et al. Reconstitution of the human biome as the most reasonable solution for epidemics of allergic and autoimmune diseases. Med Hypotheses. 2011;77(4):494–504.

    Article  PubMed  Google Scholar 

  14. Lood R, Collin M. Characterization and genome sequencing of two Propionibacterium acnes phages displaying pseudolysogeny. BMC Genomics. 2011;12:198.

    Article  PubMed  CAS  Google Scholar 

  15. Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol. 2012;34(2):201–14.

    Article  PubMed  Google Scholar 

  16. Motomura Y, et al. Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin Exp Immunol. 2009;155(1):88–95.

    Article  PubMed  CAS  Google Scholar 

  17. Wolff MJ, Broadhurst MJ, Loke P. Helminthic therapy: improving mucosal barrier function. Trends Parasitol. 2012;28(5):187–94.

    Article  PubMed  CAS  Google Scholar 

  18. Bak RO, Mikkelsen JG. Regulation of cytokines by small RNAs during skin inflammation. J Biomed Sci. 2010;17:53.

    Article  PubMed  Google Scholar 

  19. Ng EW, et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.

    Article  PubMed  CAS  Google Scholar 

  20. Nasir A. Nanodermatology: a bright glimpse just beyond the horizon—part I. Skin Therapy Lett. 2010;15(8):1–4.

    PubMed  Google Scholar 

  21. Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface. 2010;7 Suppl 1:S55–66.

    Article  PubMed  CAS  Google Scholar 

  22. Kunjachan S, et al. Theranostic systems and strategies for monitoring nanomedicine-mediated drug targeting. Curr Pharm Biotechnol. 2012;13(4):609–22.

    Article  PubMed  CAS  Google Scholar 

  23. Amiri H, Mahmoudi M, Lascialfari A. Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. Nanoscale. 2011;3(3):1022–30.

    Article  PubMed  CAS  Google Scholar 

  24. Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011;44(10):1061–70.

    Article  PubMed  CAS  Google Scholar 

  25. Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res. 2011;44(10):1071–9.

    Article  PubMed  CAS  Google Scholar 

  26. Yoo D, et al. Theranostic magnetic nanoparticles. Acc Chem Res. 2011;44(10):863–74.

    Article  PubMed  CAS  Google Scholar 

  27. Kim ST, et al. Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie. 2009;64(8):510–4.

    PubMed  CAS  Google Scholar 

  28. Baspinar Y, Keck CM, Borchert HH. Development of a positively charged prednicarbate nanoemulsion. Int J Pharm. 2010;383(1–2):201–8.

    Article  PubMed  CAS  Google Scholar 

  29. Padois K, et al. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm. 2011;416(1):300–4.

    PubMed  CAS  Google Scholar 

  30. Gelfuso GM, et al. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate. J Microencapsul. 2011;28(7):650–8.

    Article  PubMed  CAS  Google Scholar 

  31. Ahmed AR, et al. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N Engl J Med. 2006;355(17):1772–9.

    Article  PubMed  CAS  Google Scholar 

  32. Zippin JH. The genetics of psoriasis. J Drugs Dermatol. 2009;8(4):414–7.

    PubMed  Google Scholar 

  33. Hofstra JJ, et al. Treatment of hereditary angioedema with nanofiltered C1-esterase inhibitor concentrate (Cetor(R)): multi-center phase II and III studies to assess pharmacokinetics, clinical efficacy and safety. Clin Immunol. 2012;142(3):280–90.

    Article  PubMed  CAS  Google Scholar 

  34. Hollander SM, Joo SS, Wedner HJ. Factors that predict the success of cyclosporine treatment for chronic urticaria. Ann Allergy Asthma Immunol. 2011;107(6):523–8.

    Article  PubMed  CAS  Google Scholar 

  35. Czogalla A. Oral cyclosporine A—the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett. 2009;14(1):139–52.

    Article  PubMed  CAS  Google Scholar 

  36. Sanchez-Machin I, et al. T cell activity in successful treatment of chronic urticaria with omalizumab. Clin Mol Allergy. 2011;9:11.

    Article  PubMed  CAS  Google Scholar 

  37. Sagi L, et al. Evidence for methotrexate as a useful treatment for steroid-dependent chronic urticaria. Acta Derm Venereol. 2011;91(3):303–6.

    Article  PubMed  Google Scholar 

  38. Czuczman MS, et al. Ofatumumab monotherapy in rituximab-refractory follicular lymphoma: results from a multicenter study. Blood. 2012;119(16):3698–704.

    Article  PubMed  CAS  Google Scholar 

  39. Taylor PC, et al. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis. 2011;70(12):2119–25.

    Article  PubMed  CAS  Google Scholar 

  40. Ivyanskiy I, Sand C, Francis ST. Omalizumab for chronic urticaria: a case series and overview of the literature. Case Rep Dermatol. 2012;4(1):19–26.

    Article  PubMed  Google Scholar 

  41. Concannon C, et al. Nanoemulsion encapsulation and in vitro SLN models of delivery for cytotoxic methotrexate. Curr Drug Discov Technol. 2010;7(2):123–36.

    PubMed  CAS  Google Scholar 

  42. Corem-Salkmon E, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomedicine. 2011;6:1595–602.

    PubMed  CAS  Google Scholar 

  43. Lin YK, et al. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int J Nanomedicine. 2010;5:117–28.

    PubMed  CAS  Google Scholar 

  44. Di Lorenzo G, et al. Leukotriene receptor antagonists in monotherapy or in combination with antihistamines in the treatment of chronic urticaria: a systematic review. J Asthma Allergy. 2008;2:9–16.

    Article  PubMed  Google Scholar 

  45. Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of Dapsone. AAPS PharmSciTech. 2008;9(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  46. Noda S, Asano Y, Sato S. Long-term complete resolution of severe chronic idiopathic urticaria after dapsone treatment. J Dermatol. 2012;39(5):496–7.

    Article  PubMed  Google Scholar 

  47. Grattan CE, et al. Plasmapheresis for severe, unremitting, chronic urticaria. Lancet. 1992;339(8801):1078–80.

    Article  PubMed  CAS  Google Scholar 

  48. Jiang X, et al. A case report of double-filtration plasmapheresis for the resolution of refractory chronic urticaria. Ther Apher Dial. 2008;12(6):505–8.

    Article  PubMed  Google Scholar 

  49. Herrmann IK, et al. Device for continuous extracorporeal blood purification using target-specific metal nanomagnets. Nephrol Dial Transplant. 2011;26(9):2948–54.

    Article  PubMed  CAS  Google Scholar 

  50. Li FQ, et al. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method. Arch Pharm Res. 2010;33(12):1967–73.

    Article  PubMed  CAS  Google Scholar 

  51. Spritz RA. Six decades of vitiligo genetics: genome-wide studies provide insights into autoimmune pathogenesis. J Invest Dermatol. 2012;132(2):268–73.

    Article  PubMed  CAS  Google Scholar 

  52. Berson JF, et al. A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature. J Biol Chem. 2000;275(16):12281–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Nasir M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nasir, A., Gaspari, A. (2013). The Skin Immune System. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics