Skip to main content

Emerging Nanomedicine for Skin Cancer

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

Skin cancer is a common cancer and is associated with significant morbidity and mortality. Topical treatment is an attractive option compared with systemic route due to the reduced association with systemic toxicity. Nonetheless, skin is a natural barrier under physiological conditions for topical drug delivery as it is crucial to provide protection to the body. Such barrier will limit the drug uptake into skin. Common strategies consisting of physical and chemical approaches to overcome this have been reported to improve topical delivery efficacy. However, safety concerns caused by possible irreversible skin damage remain. Due to the heterogeneous physical and chemical property of the skin, current methods limits the variety of drugs suitable for effective delivery into skin. Here, in this review, we showed the promise in engineering lipidic nanoparticles in treating skin cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Incidence and mortality web-based report. Human Services, Centers for Disease Control and Prevention, and National Cancer Institute. Atlanta, GA: Department of Health and United States Cancer Statistics: 1999–2007; 2010. http://www.cdc.gov/uscs.

  2. Krathen RA, Orengo IF, Rosen T. Cutaneous metastasis: a meta-analysis of data. South Med J. 2003;96(2):164–7.

    Article  PubMed  Google Scholar 

  3. Spencer PS, Helm TN. Skin metastases in cancer patients. Cutis. 1987;39(2):119–21.

    PubMed  CAS  Google Scholar 

  4. Barry BW. Breaching the skin’s barrier to drugs. Nat Biotechnol. 2004;22:165–7.

    Article  PubMed  CAS  Google Scholar 

  5. Micali G, Lacarrubba F, Dinotta F, Massimino D, Nasca MR. Topical cream for treating cancer. Expert Opin Pharmacother. 2010;11(9):1515–27.

    Article  PubMed  CAS  Google Scholar 

  6. Arias JL. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules. 2008;13(10):2340–69.

    Article  PubMed  CAS  Google Scholar 

  7. On regulatory aspects of nanomaterials. In: Scientific Committee on Consumer Products, European Commission; 2008. http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+REPORT+A6-2009-0255+0+DOC+PDF+V0//EN.

  8. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt. 2008;13(6):064031.

    Article  PubMed  Google Scholar 

  9. Labouta HI, El-Khordagui LK, Kraus T, Schneider M. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 2011;3:4989–99.

    Article  PubMed  CAS  Google Scholar 

  10. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. Nano Lett. 2007;7:1344–8.

    Article  PubMed  CAS  Google Scholar 

  11. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–12.

    PubMed  CAS  Google Scholar 

  12. Anigbogu AN, Williams AC, Barry BW. Permeation characteristics of 8-methoxypsoralen through human skin; relevance to clinical treatment. J Pharm Pharmacol. 1996;48:357–66.

    Article  PubMed  CAS  Google Scholar 

  13. Moens E, Veldhoen M. Epithelial barrier biology: good fences make good neighbours. Immunology. 2012;135:1–8.

    Article  PubMed  CAS  Google Scholar 

  14. Nino M, Calabrò G, Santoianni P. Topical delivery of active principles: the field of dermatological research. Dermatol Online J. 2010;16(1):4.

    PubMed  Google Scholar 

  15. Dhiman S, Singh TG, Rehni AK. Transdermal patches: a recent approach to new drug delivery system. Int J Pharm Pharm Sci. 2011;3(5):26–34.

    CAS  Google Scholar 

  16. Gamer AO, Leibold E, Ravenzwaay VB. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro. 2006;20(3):301–7.

    Article  PubMed  CAS  Google Scholar 

  17. Jackson B, Brown SJ, Avilion AA, O’Shaughnessy RF, Sully K, Akinduro O, Murphy M, Cleary ML, Byrne C. TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier. J Cell Sci. 2011;124(Pt 10):1681–90.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuki M, Yamashita F, Ishida-Yamamoto A, Yamada K, Kinoshita C, Fushiki S, et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci U S A. 1998;95(3):1044–9.

    Article  PubMed  CAS  Google Scholar 

  19. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51(4):702–47.

    PubMed  CAS  Google Scholar 

  20. Scheuplein RJ, Blank IH. Mechanism of percutaneous absorption: IV. Penetration of nonelectrolytes (alcohols) from aqueous solutions and from pure liquids. J Invest Dermatol. 1973;60(5):286–96.

    Article  CAS  Google Scholar 

  21. List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, Bugge TH. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene. 2002;21(23):3765–79.

    Article  PubMed  CAS  Google Scholar 

  22. Tiwary AK, Sapra B, Jain S. Innovations in transdermal drug delivery: formulations and techniques. Recent Pat Drug Deliv Formul. 2007;1:23–36.

    Article  PubMed  CAS  Google Scholar 

  23. Kanikkannan N. Iontophoresis-based transdermal delivery systems. BioDrugs. 2002;16(5):339–47.

    Article  PubMed  CAS  Google Scholar 

  24. Batheja P, Thakur R, Michniak B. Transdermal iontophoresis. Expert Opin Drug Deliv. 2006;3(1):127–38.

    Article  PubMed  Google Scholar 

  25. Pahade A, Jadhav VM, Kadam VJ. Sonophoresis: an overview. Int J Pharm Sci Rev Res. 2010;3(2):1–32.

    Google Scholar 

  26. Herwadkar A, Sachdeva V, Taylor LF, Silver H, Banga AK. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm. 2012;423(2):289–96.

    Article  PubMed  CAS  Google Scholar 

  27. Holzmann S, Tripp CH, Schmuth M, Janke K, Koch F, Saeland S, Stoitzner P, Romani N. A model system using tape stripping for characterization of Langerhans cell-precursors in vivo. J Invest Dermatol. 2004;122(5):1165–74.

    Article  PubMed  CAS  Google Scholar 

  28. Morgan CJ, Renwick AG, Friedmann PS. The role of stratum corneum and dermal microvascular perfusion in penetration and tissue levels of water-soluble drugs investigated by microdialysis. Br J Dermatol. 2003;148:434–43.

    Article  PubMed  CAS  Google Scholar 

  29. Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21(10):1818–25.

    Article  PubMed  Google Scholar 

  30. Liu F, Huang L. Noninvasive gene delivery to the liver by mechanical massage. Hepatology. 2002;35(6):1314–9.

    Article  PubMed  Google Scholar 

  31. Tinkle SS, Antonini BA, Rich JR, et al. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect. 2003;111:1201–8.

    Article  Google Scholar 

  32. Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinology. 2009;1(4):197–206.

    Article  CAS  Google Scholar 

  33. Sakurai H, Takahashi Y, Machida Y. Influence of low-frequency massage device on transdermal absorption of ionic materials. Int J Pharm. 2005;305(1–2):112–21.

    Article  PubMed  CAS  Google Scholar 

  34. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–12.

    PubMed  CAS  Google Scholar 

  35. Maia CS, Mehnert W, Sch¨afer-Korting M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm. 2000;196:165–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sivaramakrishnan R, Nakamura C, Mehnert W, Korting HC, Kramer KD, Sch¨afer-Korting M. Glucocorticoid entrapment into lipid carriers—characterization by parelectic spectroscopy and influence on dermal uptake. J Control Release. 2004;97:493–502.

    PubMed  CAS  Google Scholar 

  37. Souto EB, Wissing SA, Barbosa CM, M¨uller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278:71–7.

    Article  PubMed  CAS  Google Scholar 

  38. Song C, Liu S. A new healthy sunscreen system for human: solid lipid nanoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding vitamin E. Int J Biol Macromol. 2005;36:116–9.

    Article  PubMed  CAS  Google Scholar 

  39. Chen HB, Chang XL, Yang XL, Du DR, Liu W, Liu J, Weng T, Yang YJ, Xu HB. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110:296–306.

    Article  PubMed  CAS  Google Scholar 

  40. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–5.

    Article  PubMed  CAS  Google Scholar 

  41. Lee PY, Zhu Y, Tan J, Sun RWY, Hao W, Liu X, Che CM, Wong KK. The cytotoxic effects of lipidic formulated gold-porphyrin nanoparticles for the treatment of neuroblastoma. Nanotechnol Sci Appl. 2010;3:23–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth K. Y. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, P., Nasir, A., Wong, K.K.Y. (2013). Emerging Nanomedicine for Skin Cancer. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics