Skip to main content

Nano-Based Gene Therapy for Dermatologic Diseases

  • Chapter
  • First Online:
Nanotechnology in Dermatology

Abstract

Nanotechnology examines and utilizes unique properties that arise in common materials when they are shrunk to sub-100 nm dimensions [1, 2]. At the nanoscale, the physical, chemical, and biological properties of materials differ from the properties of individual molecules or bulk matter [2]. Mixing and matching different properties at the nanoscales can lead to the creation of novel and useful materials in a wide range of fields. In fact, nanotechnology has already been incorporated into our daily life from consumer product goods, to medical device, to industrial products, and to scientific research tools. Engineered nanomaterials hold particularly great promise for studying biological processes and creating diagnostics and therapeutics, as their sizes are perfectly matched to the biological machines that orchestrate life. In the field of dermatology, nanoparticles have already been incorporated into sunscreens and cosmeceuticals for many years, for instance to control drug release to skin and skin appendages, and for targeting hair follicle-specific cell populations [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drexler KE. Engines of creation. 1st ed. Garden City: Anchor Press/Doubleday; 1986.

    Google Scholar 

  2. Drexler KE. Nanosystems: molecular machinery, manufacturing, and computation. New York: Wiley; 1992.

    Google Scholar 

  3. Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res. 2011;303(8):533–50.

    Article  PubMed  CAS  Google Scholar 

  4. Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363(9):809–19.

    Article  PubMed  CAS  Google Scholar 

  5. Leachman SA, Hickerson RP, Hull PR, et al. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita. J Dermatol Sci. 2008;51(3):151–7.

    Article  PubMed  CAS  Google Scholar 

  6. Jung S, Otberg N, Thiede G, et al. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J Invest Dermatol. 2006;126(8):1728–32.

    Article  PubMed  CAS  Google Scholar 

  7. Kristl J, Teskac K, Grabnar PA. Current view on nanosized solid lipid carriers for drug delivery to the skin. J Biomed Nanotechnol. 2010;6(5):529–42.

    Article  PubMed  CAS  Google Scholar 

  8. Saupe A, Wissing SA, Lenk A, Schmidt C, Muller RH. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)—structural investigations on two different carrier systems. Biomed Mater Eng. 2005;15(5):393–402.

    PubMed  CAS  Google Scholar 

  9. Schafer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59(6):427–43.

    Article  PubMed  Google Scholar 

  10. Ludwig C, Wagner R. Virus-like particles-universal molecular toolboxes. Curr Opin Biotechnol. 2007;18(6):537–45.

    Article  PubMed  CAS  Google Scholar 

  11. Mahe B, Vogt A, Liard C, et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol. 2009;129(5):1156–64.

    Article  PubMed  CAS  Google Scholar 

  12. Villalonga-Barber C, Micha-Screttas M, Steele BR, Georgopoulos A, Demetzos C. Dendrimers as biopharmaceuticals: synthesis and properties. Curr Top Med Chem. 2008;8(14):1294–309.

    Article  PubMed  CAS  Google Scholar 

  13. Venuganti VV, Perumal OP. Poly(amidoamine) dendrimers as skin penetration enhancers: influence of charge, generation, and concentration. J Pharm Sci. 2009;98(7):2345–56.

    Article  PubMed  CAS  Google Scholar 

  14. Zwiorek K, Kloeckner J, Wagner E, Coester C. Gelatin nanoparticles as a new and simple gene delivery system. J Pharm Pharm Sci. 2005;7(4):22–8.

    PubMed  Google Scholar 

  15. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  PubMed  CAS  Google Scholar 

  16. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280–94.

    Article  PubMed  CAS  Google Scholar 

  17. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105(4):1547–62.

    Article  PubMed  CAS  Google Scholar 

  18. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl. 2004;43(45):6042–108.

    Article  PubMed  CAS  Google Scholar 

  19. Freeman RG, Raju PA, Norton SM, et al. Use of nanobarcodes particles in bioassays. Methods Mol Biol. 2005;303:73–83.

    PubMed  CAS  Google Scholar 

  20. Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  21. Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev. 2008;60(15):1627–37.

    Article  PubMed  CAS  Google Scholar 

  22. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

    Article  PubMed  CAS  Google Scholar 

  23. Ataman-Onal Y, Munier S, Ganee A, et al. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release. 2006;112(2):175–85.

    Article  PubMed  Google Scholar 

  24. Mohamed F, van der Walle CF. PLGA microcapsules with novel dimpled surfaces for pulmonary delivery of DNA. Int J Pharm. 2006;311(1–2):97–107.

    Article  PubMed  CAS  Google Scholar 

  25. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35(11):1068–83.

    Article  PubMed  Google Scholar 

  26. Walther C, Meyer K, Rennert R, Neundorf I. Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem. 2008;19(12):2346–56.

    Article  PubMed  CAS  Google Scholar 

  27. Cruz LJ, Tacken PJ, Fokkink R, et al. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release. 2010;144(2):118–26.

    Article  PubMed  CAS  Google Scholar 

  28. Vogt A, Mahe B, Costagliola D, et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol. 2008;180(3):1482–9.

    PubMed  CAS  Google Scholar 

  29. Goodchild J. Therapeutic oligonucleotides. Methods Mol Biol. 2011;764:1–15.

    Article  PubMed  CAS  Google Scholar 

  30. Li L, Liu Y. Diverse small non-coding RNAs in RNA interference pathways. Methods Mol Biol. 2011;764:169–82.

    Article  PubMed  CAS  Google Scholar 

  31. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  PubMed  CAS  Google Scholar 

  32. Zamore PD. RNA interference: big applause for silencing in Stockholm. Cell. 2006;127(6):1083–6.

    Article  PubMed  CAS  Google Scholar 

  33. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA. 1978;75(1):285–8.

    Article  PubMed  CAS  Google Scholar 

  34. Leachman SA, Hickerson RP, Schwartz ME, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther. 2010;18(2):442–6.

    Article  PubMed  CAS  Google Scholar 

  35. Lewin AS, Glazer PM, Milstone LM. Gene therapy for autosomal dominant disorders of keratin. J Investig Dermatol Symp Proc. 2005;10(1):47–61.

    Article  PubMed  CAS  Google Scholar 

  36. Kendall MA, Chong YF, Cock A. The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery. Biomaterials. 2007;28(33):4968–77.

    Article  PubMed  CAS  Google Scholar 

  37. White PJ, Fogarty RD, Liepe IJ, Delaney PM, Werther GA, Wraight CJ. Live confocal microscopy of oligonucleotide uptake by keratinocytes in human skin grafts on nude mice. J Invest Dermatol. 1999;112(6):887–92.

    Article  PubMed  CAS  Google Scholar 

  38. White PJ, Fogarty RD, McKean SC, Venables DJ, Werther GA, Wraight CJ. Oligonucleotide uptake in cultured keratinocytes: influence of confluence, cationic liposomes, and keratinocyte cell type. J Invest Dermatol. 1999;112(5):699–705.

    Article  PubMed  CAS  Google Scholar 

  39. White PJ, Gray AC, Fogarty RD, et al. C-5 propyne-modified oligonucleotides penetrate the epidermis in psoriatic and not normal human skin after topical application. J Invest Dermatol. 2002;118(6):1003–7.

    Article  PubMed  CAS  Google Scholar 

  40. Lee WR, Shen SC, Zhuo RZ, Wang KC, Fang JY. Enhancement of topical small interfering RNA delivery and expression by low-fluence erbium:YAG laser pretreatment of skin. Hum Gene Ther. 2009;20(6):580–8.

    Article  PubMed  CAS  Google Scholar 

  41. Tran MA, Gowda R, Sharma A, et al. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 2008;68(18):7638–49.

    Article  PubMed  CAS  Google Scholar 

  42. Garcia M, Larcher F, Hickerson RP, et al. Development of skin-humanized mouse models of pachyonychia congenita. J Invest Dermatol. 2011;131(5):1053–60.

    Article  PubMed  CAS  Google Scholar 

  43. Ritprajak P, Hashiguchi M, Azuma M. Topical application of cream-emulsified CD86 siRNA ameliorates allergic skin disease by targeting cutaneous dendritic cells. Mol Ther. 2008;16(7):1323–30.

    Article  PubMed  CAS  Google Scholar 

  44. Uchida T, Kanazawa T, Kawai M, Takashima Y, Okada H. Therapeutic effects on atopic dermatitis by anti-RelA short interfering RNA combined with functional peptides Tat and AT1002. J Pharmacol Exp Ther. 2011;338(2):443–50.

    Article  PubMed  CAS  Google Scholar 

  45. Chabri F, Bouris K, Jones T, et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004;150(5):869–77.

    Article  PubMed  CAS  Google Scholar 

  46. Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–37.

    Article  PubMed  CAS  Google Scholar 

  47. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.

    Article  PubMed  CAS  Google Scholar 

  48. Gonzalez-Gonzalez E, Ra H, Hickerson RP, et al. siRNA silencing of keratinocyte-specific GFP expression in a transgenic mouse skin model. Gene Ther. 2009;16(8):963–72.

    Article  PubMed  CAS  Google Scholar 

  49. Gonzalez-Gonzalez E, Speaker TJ, Hickerson RP, et al. Silencing of reporter gene expression in skin using siRNAs and expression of plasmid DNA delivered by a soluble protrusion array device (PAD). Mol Ther. 2010;18(9):1667–74.

    Article  PubMed  CAS  Google Scholar 

  50. Takanashi M, Oikawa K, Sudo K, et al. Therapeutic silencing of an endogenous gene by siRNA cream in an arthritis model mouse. Gene Ther. 2009;16(8):982–9.

    Article  PubMed  CAS  Google Scholar 

  51. Gleave ME, Monia BP. Antisense therapy for cancer. Nat Rev Cancer. 2005;5(6):468–79.

    Article  PubMed  CAS  Google Scholar 

  52. Ng PS, Bergstrom DE. Alternative nucleic acid analogues for programmable assembly: hybridization of LNA to PNA. Nano Lett. 2005;5(1):107–11.

    Article  PubMed  CAS  Google Scholar 

  53. He XX, Wang K, Tan W, et al. Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc. 2003;125(24):7168–9.

    Article  PubMed  CAS  Google Scholar 

  54. Han G, Martin CT, Rotello VM. Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des. 2006;67(1):78–82.

    Article  PubMed  CAS  Google Scholar 

  55. Jacobson GB, Gonzalez-Gonzalez E, Spitler R, et al. Biodegradable nanoparticles with sustained release of functional siRNA in skin. J Pharm Sci. 2010;99(10):4261–6.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP. siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release. 2006;112(2):229–39.

    Article  PubMed  CAS  Google Scholar 

  57. Pal A, Ahmad A, Khan S, et al. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int J Oncol. 2005;26(4):1087–91.

    PubMed  CAS  Google Scholar 

  58. El Maghraby GM, Williams AC, Barry BW. Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol. 2006;58(4):415–29.

    Article  PubMed  CAS  Google Scholar 

  59. Yazdi AS, Palmedo G, Flaig MJ, et al. Mutations of the BRAF gene in benign and malignant melanocytic lesions. J Invest Dermatol. 2003;121(5):1160–2.

    Article  PubMed  CAS  Google Scholar 

  60. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  61. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  PubMed  CAS  Google Scholar 

  62. Song KH, Fasano A, Eddington ND. Effect of the six-mer synthetic peptide (AT1002) fragment of zonula occludens toxin on the intestinal absorption of cyclosporin A. Int J Pharm. 2008;351(1–2):8–14.

    Article  PubMed  CAS  Google Scholar 

  63. Song KH, Fasano A, Eddington ND. Enhanced nasal absorption of hydrophilic markers after dosing with AT1002, a tight junction modulator. Eur J Pharm Biopharm. 2008;69(1):231–7.

    Article  PubMed  CAS  Google Scholar 

  64. Snyder EL, Dowdy SF. Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. Expert Opin Drug Deliv. 2005;2(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  65. Yi X, Zhao G, Zhang H, et al. MITF-siRNA formulation is a safe and effective therapy for human melasma. Mol Ther. 2011;19(2):362–71.

    Article  PubMed  CAS  Google Scholar 

  66. Hickerson RP, Flores MA, Leake D, et al. Use of self-delivery siRNAs to inhibit gene expression in an organotypic pachyonychia congenita model. J Invest Dermatol. 2011;131(5):1037–44.

    Article  PubMed  CAS  Google Scholar 

  67. Gonzalez-Gonzalez E, Kim YC, Speaker TJ, et al. Visualization of plasmid delivery to keratincytes in mouse and human epidermis. Sci Rep. 2011;1(158):1–9.

    Google Scholar 

  68. Choate KA, Khavari PA. Direct cutaneous gene delivery in a human genetic skin disease. Hum Gene Ther. 1997;8(14):1659–65.

    Article  PubMed  CAS  Google Scholar 

  69. Siprashvili Z, Nguyen NT, Bezchinsky MY, Marinkovich MP, Lane AT, Khavari PA. Long-term type VII collagen restoration to human epidermolysis bullosa skin tissue. Hum Gene Ther. 2010;21(10):1299–310.

    Article  PubMed  CAS  Google Scholar 

  70. Ortiz-Urda S, Lin Q, Yant SR, Keene D, Kay MA, Khavari PA. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther. 2003;10(13):1099–104.

    Article  PubMed  CAS  Google Scholar 

  71. Geusens B, Strobbe T, Bracke S, et al. Lipid-mediated gene delivery to the skin. Eur J Pharm Sci. 2011;43(4):199–211.

    Article  PubMed  CAS  Google Scholar 

  72. Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials. 2006;27(29):5143–50.

    Article  PubMed  CAS  Google Scholar 

  73. Bharali DJ, Klejbor I, Stachowiak EK, et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA. 2005;102(32):11539–44.

    Article  PubMed  CAS  Google Scholar 

  74. Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA. 2005;102(2):279–84.

    Article  PubMed  CAS  Google Scholar 

  75. Yamamoto A, Kormann M, Rosenecker J, Rudolph C. Current prospects for mRNA gene delivery. Eur J Pharm Biopharm. 2009;71(3):484–9.

    Article  PubMed  CAS  Google Scholar 

  76. Baum C, Dullmann J, Li Z, et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood. 2003;101(6):2099–114.

    Article  PubMed  CAS  Google Scholar 

  77. Belancio VP, Hedges DJ, Deininger P. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 2008;18(3):343–58.

    Article  PubMed  CAS  Google Scholar 

  78. Cui Z, Baizer L, Mumper R. Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J Biotechnol. 2003;102:105–15.

    Article  PubMed  CAS  Google Scholar 

  79. Liu M, Hilleman M, Kurth R. DNA vaccines: a new era in vaccinology. Ann N Y Acad Sci. 1995;772:1–94.

    Article  Google Scholar 

  80. Mumper R, Ledebur H. Dendritic cell delivery of plasmid DNA: application for controlled nucleic acid-based vaccines. Mol Biotechnol. 2001;19:79–95.

    Article  PubMed  CAS  Google Scholar 

  81. Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol. 2000;18:927–74.

    Article  PubMed  CAS  Google Scholar 

  82. Le TP, Coonan KM, Hedstrom RC, et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine. 2000;18(18):1893–901.

    Article  PubMed  CAS  Google Scholar 

  83. Haynes JR. Particle-mediated DNA vaccine delivery to the skin. Expert Opin Biol Ther. 2004;4(6):889–900.

    Article  PubMed  CAS  Google Scholar 

  84. Hunsaker BD, Perino LJ. Efficacy of intradermal vaccination. Vet Immunol Immunopathol. 2001;79(1–2):1–13.

    Article  PubMed  CAS  Google Scholar 

  85. Raz E, Carson DA, Parker SE, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci USA. 1994;91(20):9519–23.

    Article  PubMed  CAS  Google Scholar 

  86. O’Hagan DT. Recent advances in vaccine adjuvants for systemic and mucosal administration. J Pharm Pharmacol. 1998;50(1):1–10.

    Article  PubMed  Google Scholar 

  87. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  PubMed  CAS  Google Scholar 

  88. Chen X, Kask AS, Crichton ML, et al. Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release. 2010;148(3):327–33.

    Article  PubMed  CAS  Google Scholar 

  89. Wermeling DP, Banks SL, Hudson DA, et al. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proc Natl Acad Sci USA. 2008;105(6):2058–63.

    Article  PubMed  CAS  Google Scholar 

  90. Chen X, Prow TW, Crichton ML, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control Release. 2009;139(3):212–20.

    Article  PubMed  CAS  Google Scholar 

  91. Nasir A. The future of nanotechnology in dermatology. US Dermatol. 2009;3(1):11–3.

    Google Scholar 

  92. Oberdorster G, Finkelstein JN, Johnston C, et al. Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst. 2000;(96):5–74; discussion 75–86.

    Google Scholar 

  93. Apopa PL, Qian Y, Shao R, et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol. 2009;6:1.

    Article  PubMed  Google Scholar 

  94. Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44(9):1689–99.

    Article  PubMed  CAS  Google Scholar 

  95. Klaper R, Crago J, Barr J, Arndt D, Setyowati K, Chen J. Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization. Environ Pollut. 2009;157(4):1152–6.

    Article  PubMed  CAS  Google Scholar 

  96. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. Ultrafine particles. Occup Environ Med. 2001;58(3):211–6.

    Article  PubMed  CAS  Google Scholar 

  97. Fedorov Y, Anderson EM, Birmingham A, et al. Off-target effects by siRNA can induce toxic phenotype. RNA. 2006;12(7):1188–96.

    Article  PubMed  CAS  Google Scholar 

  98. Lin X, Ruan X, Anderson MG, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005;33(14):4527–35.

    Article  PubMed  CAS  Google Scholar 

  99. Chen D, Zheng D, Giljohann D, et al. Topically-delivered polyvalent siRNA-gold nanoparticles traverse epidermis to cause gene suppression without toxicity. J Invest Dermatol. 2011;131 Suppl 1:S64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy S. Paller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, D.L., Zheng, D., Paller, A.S. (2013). Nano-Based Gene Therapy for Dermatologic Diseases. In: Nasir, A., Friedman, A., Wang, S. (eds) Nanotechnology in Dermatology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5034-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5034-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5033-7

  • Online ISBN: 978-1-4614-5034-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics