Skip to main content

Heart Mitochondria: Receivers and Transmitters of Signals

  • Chapter
  • First Online:
Mitochondria and Their Role in Cardiovascular Disease
  • 1805 Accesses

Abstract

Besides their central bioenergetic role in supplying ATP, heart mitochondria play an essential role in the regulatory and signaling events that occur in response to physiological stresses, including but not limited to heart failure (HF), myocardial ischemia and reperfusion injury (IRI), hypoxia, oxidative stress (OS), and hormonal and cytokine stimuli. Research on both intact cardiac and skeletal muscle tissue and cultured cardiomyocytes has just begun to probe the nature and the extent of mitochondrial involvement in interorganelle communication, hypertrophic growth, and cell death. In this chapter we will discuss mitochondria participation, at the molecular and biochemical levels, in the multiple and interrelated signaling pathways, gauging the effect that mitochondria have as a receiver, integrator, and transmitter of signals on cardiac phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–69.

    Article  PubMed  CAS  Google Scholar 

  2. Hood DA. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001;90: 1137–57.

    PubMed  CAS  Google Scholar 

  3. Totland GK, Madsen L, Klementsen B, et al. Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids. Biol Cell. 2000;92:317–29.

    Article  PubMed  CAS  Google Scholar 

  4. Lundgren B, Meijer J, DePierre JW. Induction of cytosolic and microsomal epoxide hydrolases and proliferation of peroxisomes and mitochondria in mouse liver after dietary exposure to p-chlorophenoxyacetic acid, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Biochem Pharmacol. 1987;36:815–21.

    Article  PubMed  CAS  Google Scholar 

  5. Weber K, Bruck P, Mikes Z, Kupper JH, Klingenspor M, Wiesner RJ. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology. 2002;143:177–84.

    Article  PubMed  CAS  Google Scholar 

  6. Williams RS, Garcia-Moll M, Mellor J, Salmons S, Harlan W. Adaptation of skeletal muscle to increased contractile activity. Expression nuclear genes encoding mitochondrial proteins. J Biol Chem. 1987;262:2764–7.

    PubMed  CAS  Google Scholar 

  7. Nelson BD. Thyroid hormone regulation of mitochondrial function. Comments on the mechanism of signal transduction. Biochim Biophys Acta. 1990;1018:275–7.

    Article  PubMed  CAS  Google Scholar 

  8. Xia Y, Buja LM, Scarpulla RC, McMillin JB. Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc Natl Acad Sci USA. 1997;94:11399–404.

    Article  PubMed  CAS  Google Scholar 

  9. Bogenhagen D, Clayton DA. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem. 1974;249:7991–5.

    PubMed  CAS  Google Scholar 

  10. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66:409–35.

    Article  PubMed  CAS  Google Scholar 

  11. Attardi G, Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333.

    Article  PubMed  CAS  Google Scholar 

  12. Kadenbach B, Stroh A, Becker A, Eckerskorn C, Lottspeich F. Tissue- and species-specific expression of cytochrome c oxidase isozymes in vertebrates. Biochim Biophys Acta. 1990;1015:368–72.

    Article  PubMed  CAS  Google Scholar 

  13. Lenka N, Vijayasarathy C, Mullick J, Avadhani NG. Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex. Prog Nucleic Acid Res Mol Biol. 1998;61:309–44.

    Article  PubMed  CAS  Google Scholar 

  14. McLennan HR, Degli Esposti M. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr. 2000;32:153–62.

    Article  PubMed  CAS  Google Scholar 

  15. Scheller K, Seibel P, Sekeris CE. Glucocorticoid and thyroid hormone receptors in mitochondria of animal cells. Int Rev Cytol. 2003;222:1–61.

    Article  PubMed  Google Scholar 

  16. Zhu H, Shan L, Schiller PW, Mai A, Peng T. Histone deacetylase-3 activation promotes tumor necrosis factor-alpha (TNF-alpha) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem. 2010;285:9429–36.

    Article  PubMed  CAS  Google Scholar 

  17. Novak I, Dikic I. Autophagy receptors in developmental clearance of mitochondria. Autophagy. 2011;7:301–3.

    Article  PubMed  CAS  Google Scholar 

  18. Colavecchia M, Christie LN, Kanwar YS, Hood DA. Functional consequences of thyroid hormone-induced changes in the mitochondrial protein import pathway. Am J Physiol Endocrinol Metab. 2003;284:E29–35.

    PubMed  CAS  Google Scholar 

  19. Schneider JJ, Hood DA. Effect of thyroid hormone on mtHsp70 expression, mitochondrial import and processing in cardiac muscle. J Endocrinol. 2000;165:9–17.

    Article  PubMed  CAS  Google Scholar 

  20. Marin-Garcia J. Thyroid hormone and myocardial mitochondrial biogenesis. Vascul Pharmacol. 2010;52:120–30.

    Article  PubMed  CAS  Google Scholar 

  21. Shioi T, McMullen JR, Tarnavski O, et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107:1664–70.

    Article  PubMed  CAS  Google Scholar 

  22. Song X, Kusakari Y, Xiao CY, et al. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol. 2010;299:C1256–66.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang D, Contu R, Latronico MV, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest. 2010;120:2805–16.

    Article  PubMed  CAS  Google Scholar 

  24. Biswas G, Guha M, Avadhani NG. Mitochondria-to-nucleus stress signaling in mammalian cells: nature of nuclear gene targets, transcription regulation, and induced resistance to apoptosis. Gene. 2005;354:132–9.

    Article  PubMed  CAS  Google Scholar 

  25. Arnould T, Vankoningsloo S, Renard P, et al. CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J. 2002;21:53–63.

    Article  PubMed  CAS  Google Scholar 

  26. Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88:611–38.

    Article  PubMed  CAS  Google Scholar 

  27. Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002;32:235–49.

    Article  PubMed  CAS  Google Scholar 

  28. Harr MW, Distelhorst CW. Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol. 2010;2:a005579.

    Article  PubMed  CAS  Google Scholar 

  29. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27:6407–18.

    Article  PubMed  CAS  Google Scholar 

  30. Hajnoczky G, Csordas G, Das S, et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006;40:|553–60.

    Article  PubMed  CAS  Google Scholar 

  31. Hanson CJ, Bootman MD, Roderick HL. Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol. 2004;14: R933–5.

    Article  PubMed  CAS  Google Scholar 

  32. Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell. 2006;98: 1–14.

    Article  PubMed  CAS  Google Scholar 

  33. Hanson CJ, Bootman MD, Distelhorst CW, Wojcikiewicz RJ, Roderick HL. Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium. 2008;44:324–38.

    Article  PubMed  CAS  Google Scholar 

  34. Diaz-Prieto N, Herrera-Peco I, de Diego AM, et al. Bcl2 mitigates Ca2+ entry and mitochondrial Ca2+ overload through downregulation of L-type Ca2+ channels in PC12 cells. Cell Calcium. 2008;44:339–52.

    Article  PubMed  CAS  Google Scholar 

  35. Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta. 2002;1576: 1–14.

    Article  PubMed  CAS  Google Scholar 

  36. Goffart S, Wiesner RJ. Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol. 2003;88:33–40.

    Article  PubMed  CAS  Google Scholar 

  37. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106:847–56.

    Article  PubMed  CAS  Google Scholar 

  38. Gilde AJ, van der Lee KA, Willemsen PH, et al. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003;92:518–24.

    Article  PubMed  CAS  Google Scholar 

  39. Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10:238–45.

    Article  PubMed  CAS  Google Scholar 

  40. Djouadi F, Brandt JM, Weinheimer CJ, Leone TC, Gonzalez FJ, Kelly DP. The role of the peroxisome proliferator-activated receptor alpha (PPAR alpha) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fatty Acids. 1999;60:339–43.

    Article  PubMed  CAS  Google Scholar 

  41. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol. 2003;551:491–501.

    Article  PubMed  CAS  Google Scholar 

  42. Huss JM, Levy FH, Kelly DP. Hypoxia inhibits the peroxisome proliferator-activated receptor alpha/retinoid X receptor gene regulatory pathway in cardiac myocytes: a mechanism for O2-dependent modulation of mitochondrial fatty acid oxidation. J Biol Chem. 2001;276:27605–12.

    Article  PubMed  CAS  Google Scholar 

  43. Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002;296:349–52.

    Article  PubMed  CAS  Google Scholar 

  44. Sack MN, Harrington LS, Jonassen AK, Mjos OD, Yellon DM. Coordinate regulation of metabolic enzyme encoding genes during cardiac development and following carvedilol therapy in spontaneously hypertensive rats. Cardiovasc Drugs Ther. 2000;14: 31–9.

    Article  PubMed  CAS  Google Scholar 

  45. Bushdid PB, Osinska H, Waclaw RR, Molkentin JD, Yutzey KE. NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ Res. 2003;92:1305–13.

    Article  PubMed  CAS  Google Scholar 

  46. Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109:121–30.

    PubMed  CAS  Google Scholar 

  47. Wang J, Wilhelmsson H, Graff C, et al. Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet. 1999;21:133–7.

    Article  PubMed  CAS  Google Scholar 

  48. Thomson M. Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria. Cell Mol Life Sci. 2002;59:213–9.

    Article  PubMed  CAS  Google Scholar 

  49. Orfali KA, Fryer LG, Holness MJ, Sugden MC. Long-term regulation of pyruvate dehydrogenase kinase by high-fat feeding. Experiments in vivo and in cultured cardiomyocytes. FEBS Lett. 1993;336:501–5.

    Article  PubMed  CAS  Google Scholar 

  50. Doering CB, Danner DJ. Amino acid deprivation induces translation of branched-chain alpha-ketoacid dehydrogenase kinase. Am J Physiol Cell Physiol. 2000;279:C1587–94.

    PubMed  CAS  Google Scholar 

  51. Technikova-Dobrova Z, Sardanelli AM, Stanca MR, Papa S. cAMP-dependent protein phosphorylation in mitochondria of bovine heart. FEBS Lett. 1994;350:187–91.

    Article  PubMed  CAS  Google Scholar 

  52. Wang Y, Hirai K, Ashraf M. Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity. Circ Res. 1999;85:731–41.

    Article  PubMed  CAS  Google Scholar 

  53. Baines CP, Zhang J, Wang GW, et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res. 2002;90:390–7.

    Article  PubMed  CAS  Google Scholar 

  54. He H, Li HL, Lin A, Gottlieb RA. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ. 1999;6:987–91.

    Article  PubMed  CAS  Google Scholar 

  55. Baines CP, Song CX, Zheng YT, et al. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003;92:873–80.

    Article  PubMed  CAS  Google Scholar 

  56. Fryer RM, Jo El J, Hsu AK, Gross GJ. Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts. Am J Physiol Heart Circ Physiol. 1999;276:H1229–35.

    CAS  Google Scholar 

  57. Chen L, Hahn H, Wu G, et al. Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA. 2001;98:11114–9.

    Article  PubMed  CAS  Google Scholar 

  58. Sardanelli AM, Technikova-Dobrova Z, Scacco SC, Speranza F, Papa S. Characterization of proteins phosphorylated by the cAMP-dependent protein kinase of bovine heart mitochondria. FEBS Lett. 1995;377:470–4.

    Article  PubMed  CAS  Google Scholar 

  59. Papa S. The NDUFS4 nuclear gene of complex I of mitochondria and the cAMP cascade. Biochim Biophys Acta. 2002;1555: 147–53.

    Article  PubMed  CAS  Google Scholar 

  60. Lee I, Bender E, Kadenbach B. Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem. 2002;234–235: 63–70.

    Article  PubMed  Google Scholar 

  61. Schulenberg B, Aggelers R, Beechem JM, Capaldi RA, Patton WF. Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem. 2003;278:27251–5.

    Article  PubMed  CAS  Google Scholar 

  62. He H, Chen M, Scheffler NK, Gibson BW, Spremulli LL, Gottlieb RA. Phosphorylation of mitochondrial elongation factor Tu in ischemic myocardium: basis for chloramphenicol-mediated cardioprotection. Circ Res. 2001;89:461–7.

    Article  PubMed  CAS  Google Scholar 

  63. Lebiedzinska M, Szabadkai G, Jones AW, Duszynski J, Wieckowski MR. Interactions between the endoplasmic reticulum, mitochondria, plasma membrane and other subcellular organelles. Int J Biochem Cell Biol. 2009;41:1805–16.

    Article  PubMed  CAS  Google Scholar 

  64. Vandecasteele G, Szabadkai G, Rizzuto R. Mitochondrial calcium homeostasis: mechanisms and molecules. IUBMB Life. 2001;52:213–9.

    Article  PubMed  CAS  Google Scholar 

  65. Szabadkai G, Duchen MR. Mitochondria: the hub of cellular Ca2+ signaling. Physiology (Bethesda). 2008;23:84–94.

    Article  CAS  Google Scholar 

  66. Bianchi K, Vandecasteele G, Carli C, Romagnoli A, Szabadkai G, Rizzuto R. Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha. Cell Death Differ. 2006;13:586–96.

    Article  PubMed  CAS  Google Scholar 

  67. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517–29.

    Article  PubMed  CAS  Google Scholar 

  68. Rutter GA. RR. Regulation of mitochondrial metabolism by ER Ca++ release: an intimate connection. Trends Biochem Sci. 2000;25:215–22.

    Article  PubMed  CAS  Google Scholar 

  69. Duchen MR. Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J Physiol. 1999;516:1–17.

    Article  PubMed  CAS  Google Scholar 

  70. Griffiths EJ. Use of ruthenium red as an inhibitor of mitochondrial Ca (2+) uptake in single rat cardiomyocytes. FEBS Lett. 2000;486:257–60.

    Article  PubMed  CAS  Google Scholar 

  71. Pacher P, Hajnoczky G. Propagation of the apoptotic signal by mitochondrial waves. EMBO J. 2001;20:4107–21.

    Article  PubMed  CAS  Google Scholar 

  72. McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990;70:391–425.

    PubMed  CAS  Google Scholar 

  73. Robb-Gaspers LD, Burnett P, Rutter GA, Denton RM, Rizzuto R, Thomas AP. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 1998;17:4987–5000.

    Article  PubMed  CAS  Google Scholar 

  74. Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J. 2003;84:2734–55.

    Article  PubMed  CAS  Google Scholar 

  75. Das AM, Harris DA. Control of mitochondrial ATP synthase in rat cardiomyocytes: effects of thyroid hormone. Biochim Biophys Acta. 1991;1096:284–90.

    Article  PubMed  CAS  Google Scholar 

  76. Territo PR, Mootha VK, French SA, Balaban RS. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol. 2000;278: C423–35.

    PubMed  CAS  Google Scholar 

  77. Rizzuto R, Pinton P, Carrington W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280:1763–6.

    Article  PubMed  CAS  Google Scholar 

  78. Csordas G, Thomas AP, Hajnoczky G. Calcium signal transmission between ryanodine receptors and mitochondria in cardiac muscle. Trends Cardiovasc Med. 2001;11:269–75.

    Article  PubMed  CAS  Google Scholar 

  79. Gunter TE, Gunter KK. Uptake of calcium by mitochondria: transport and possible function. IUBMB Life. 2001;52:197–204.

    Article  PubMed  CAS  Google Scholar 

  80. Buntinas L, Gunter KK, Sparagna GC, Gunter TE. The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim Biophys Acta. 2001;1504:248–61.

    Article  PubMed  CAS  Google Scholar 

  81. Crompton M, Costi A, Hayat L. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J. 1987;245:915–8.

    PubMed  CAS  Google Scholar 

  82. Hajnoczky G, Csordas G, Yi M. Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium. 2002;32:363–77.

    Article  PubMed  CAS  Google Scholar 

  83. Rapizzi E, Pinton P, Szabadkai G, et al. Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol. 2002;159: 613–24.

    Article  PubMed  CAS  Google Scholar 

  84. Ye B, Kroboth SL, Pu JL, et al. Molecular identification and functional characterization of a mitochondrial sulfonylurea receptor 2 splice variant generated by intraexonic splicing. Circ Res. 2009;105:1083–93.

    Article  PubMed  CAS  Google Scholar 

  85. Aggarwal NT, Pravdic D, McNally EM, Bosnjak ZJ, Shi NQ, Makielski JC. The mitochondrial bioenergetic phenotype for protection from cardiac ischemia in SUR2 mutant mice. Am J Physiol Heart Circ Physiol. 2010;299(6):H1884–90.

    Article  PubMed  CAS  Google Scholar 

  86. O’Rourke B. Myocardial K(ATP) channels in preconditioning. Circ Res. 2000;87:845–55.

    Article  PubMed  Google Scholar 

  87. Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Hoek TL. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 2003;284:H299–308.

    PubMed  CAS  Google Scholar 

  88. Ardehali H, O’Rourke B. Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol. 2005;39:7–16.

    Article  PubMed  CAS  Google Scholar 

  89. Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta. 2003;1606:1–21.

    Article  PubMed  CAS  Google Scholar 

  90. Das M, Parker JE, Halestrap AP. Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. J Physiol. 2003;547: 893–902.

    Article  PubMed  CAS  Google Scholar 

  91. Akao M, Teshima Y, Marban E. Antiapoptotic effect of nicorandil mediated by mitochondrial atp-sensitive potassium channels in cultured cardiac myocytes. J Am Coll Cardiol. 2002;40:803–10.

    Article  PubMed  CAS  Google Scholar 

  92. Nagata K, Obata K, Odashima M, et al. Nicorandil inhibits oxidative stress-induced apoptosis in cardiac myocytes through activation of mitochondrial ATP-sensitive potassium channels and a nitrate-like effect. J Mol Cell Cardiol. 2003;35:1505–12.

    Article  PubMed  CAS  Google Scholar 

  93. Xu W, Liu Y, Wang S, et al. Cytoprotective role of Ca2+- activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002;298:1029–33.

    Article  PubMed  CAS  Google Scholar 

  94. Hanley PJ, Daut J. K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms. J Mol Cell Cardiol. 2005;39:17–50.

    Article  PubMed  CAS  Google Scholar 

  95. Galluzzi L, Vitale I, Kepp O, et al. Methods to dissect mitochondrial membrane permeabilization in the course of apoptosis. Methods Enzymol. 2008;442:355–74.

    Article  PubMed  Google Scholar 

  96. Kroemer G. Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun. 2003;304:433–5.

    Article  PubMed  CAS  Google Scholar 

  97. Grimm S, Brdiczka D. The permeability transition pore in cell death. Apoptosis. 2007;12:841–55.

    Article  PubMed  CAS  Google Scholar 

  98. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res. 2004;61:372–85.

    Article  PubMed  CAS  Google Scholar 

  99. Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM. Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol. 2005;289:H237–42.

    Article  PubMed  CAS  Google Scholar 

  100. Penna C, Bassino E, Alloatti G. Platelet activating factor: the good and the bad in the ischemic/reperfused heart. Exp Biol Med (Maywood). 2011;236:390–401.

    Article  CAS  Google Scholar 

  101. Oddis CV, Finkel MS. Cytokine-stimulated nitric oxide production inhibits mitochondrial activity in cardiac myocytes. Biochem Biophys Res Commun. 1995;213:1002–9.

    Article  PubMed  CAS  Google Scholar 

  102. Zell R, Geck P, Werdan K, Boekstegers P. TNF-alpha and IL-1 alpha inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: evidence for primary impairment of mitochondrial function. Mol Cell Biochem. 1997;177:61–7.

    Article  PubMed  CAS  Google Scholar 

  103. Sammut IA, Harrison JC. Cardiac mitochondrial complex activity is enhanced by heat shock proteins. Clin Exp Pharmacol Physiol. 2003;30:110–5.

    Article  PubMed  CAS  Google Scholar 

  104. Bialik S, Cryns VL, Drincic A, et al. The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circ Res. 1999;85:403–14.

    Article  PubMed  CAS  Google Scholar 

  105. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB. Fatty acid-induced apoptosis in neonatal cardiomyocytes: redox signaling. Antioxid Redox Signal. 2001;3:71–9.

    Article  PubMed  CAS  Google Scholar 

  106. Gudz TI, Tserng KY, Hoppel CL. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997;272:24154–8.

    Article  PubMed  CAS  Google Scholar 

  107. Riobo NA, Clementi E, Melani M, et al. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. Biochem J. 2001;359:139–45.

    Article  PubMed  CAS  Google Scholar 

  108. Poderoso JJ, Peralta JG, Lisdero CL, et al. Nitric oxide regulates oxygen uptake and hydrogen peroxide release by the isolated beating rat heart. Am J Physiol. 1998;274:C112–9.

    PubMed  CAS  Google Scholar 

  109. Wiesner RJ, Hornung TV, Garman JD, Clayton DA, O’Gorman E, Wallimann T. Stimulation of mitochondrial gene expression and proliferation of mitochondria following impairment of cellular energy transfer by inhibition of the phosphocreatine circuit in rat hearts. J Bioenerg Biomembr. 1999;31:559–67.

    Article  PubMed  CAS  Google Scholar 

  110. Tanaka T, Morita H, Koide H, Kawamura K, Takatsu T. Biochemical and morphological study of cardiac hypertrophy. Effects of thyroxine on enzyme activities in the rat myocardium. Basic Res Cardiol. 1985;80:165–74.

    Article  PubMed  CAS  Google Scholar 

  111. Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol. 1999;19:5800–10.

    PubMed  CAS  Google Scholar 

  112. Cook SA, Matsui T, Li L, Rosenzweig A. Transcriptional effects of chronic Akt activation in the heart. J Biol Chem. 2002;277: 22528–33.

    Article  PubMed  CAS  Google Scholar 

  113. Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell. 2002;13:2276–88.

    Article  PubMed  CAS  Google Scholar 

  114. Nebigil CG, Etienne N, Messaddeq N, Maroteaux L. Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling. FASEB J. 2003;17:1373–5.

    PubMed  CAS  Google Scholar 

  115. Matsui T, Tao J, del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation. 2001;104:330–5.

    Article  PubMed  CAS  Google Scholar 

  116. Krieg T, Qin Q, McIntosh EC, Cohen MV, Downey JM. ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. Am J Physiol Heart Circ Physiol. 2002;283:H2322–30.

    PubMed  CAS  Google Scholar 

  117. Li Y, Sato T. Dual signaling via protein kinase C and phosphatidylinositol 3′-kinase/Akt contributes to bradykinin B2 receptor-induced cardioprotection in guinea pig hearts. J Mol Cell Cardiol. 2001;33:2047–53.

    Article  PubMed  CAS  Google Scholar 

  118. Chandel NS, Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol. 2000;88: 1880–9.

    Article  PubMed  CAS  Google Scholar 

  119. Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem. 1998;273:11619–24.

    Article  PubMed  CAS  Google Scholar 

  120. Kacimi R, Long CS, Karliner JS. Chronic hypoxia modulates the interleukin-1beta-stimulated inducible nitric oxide synthase pathway in cardiac myocytes. Circulation. 1997;96:1937–43.

    Article  PubMed  CAS  Google Scholar 

  121. French S, Giulivi C, Balaban RS. Nitric oxide synthase in porcine heart mitochondria: evidence for low physiological activity. Am J Physiol Heart Circ Physiol. 2001;280:H2863–7.

    PubMed  CAS  Google Scholar 

  122. Kanai AJ, Pearce LL, Clemens PR, et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA. 2001;98: 14126–31.

    Article  PubMed  CAS  Google Scholar 

  123. Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol. 2002;282:L1324–9.

    PubMed  CAS  Google Scholar 

  124. Enomoto N, Koshikawa N, Gassmann M, Hayashi J, Takenaga K. Hypoxic induction of hypoxia-inducible factor-1alpha and oxygen-regulated gene expression in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun. 2002;297:346–52.

    Article  PubMed  CAS  Google Scholar 

  125. Damle S, Marín-García J. Mitochondrial uncoupler proteins. Curr Enz Inhib. 2010;6:1–10.

    Article  CAS  Google Scholar 

  126. Lanni A, De Felice M, Lombardi A, et al. Induction of UCP2 mRNA by thyroid hormones in rat heart. FEBS Lett. 1997;418:171–4.

    Article  PubMed  CAS  Google Scholar 

  127. Boehm EA, Jones BE, Radda GK, Veech RL, Clarke K. Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol. 2001;280:H977–83.

    PubMed  CAS  Google Scholar 

  128. Young ME, Patil S, Ying J, et al. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J. 2001;15:833–45.

    Article  PubMed  CAS  Google Scholar 

  129. Barbe P, Larrouy D, Boulanger C, et al. Triiodothyronine-mediated up-regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J. 2001;15:13–5.

    PubMed  CAS  Google Scholar 

  130. MacLellan JD, Gerrits MF, Gowing A, Smith PJ, Wheeler MB, Harper ME. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells. Diabetes. 2005;54:2343–50.

    Article  PubMed  CAS  Google Scholar 

  131. Bienengraeber M, Ozcan C, Terzic A. Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. J Mol Cell Cardiol. 2003;35:861–5.

    Article  PubMed  CAS  Google Scholar 

  132. Echtay KS, Roussel D, St-Pierre J, et al. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002;415:96–9.

    Article  PubMed  CAS  Google Scholar 

  133. Echtay KS, Murphy MP, Smith RA, Talbot DA, Brand MD. Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. J Biol Chem. 2002;277:47129–35.

    Article  PubMed  CAS  Google Scholar 

  134. Echtay KS, Esteves TC, Pakay JL, et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003;22:4103–10.

    Article  PubMed  CAS  Google Scholar 

  135. Teshima Y, Akao M, Jones SP, Marban E. Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res. 2003;93:192–200.

    Article  PubMed  CAS  Google Scholar 

  136. Essop MF, Razeghi P, McLeod C, Young ME, Taegtmeyer H, Sack MN. Hypoxia-induced decrease of UCP3 gene expression in rat heart parallels metabolic gene switching but fails to affect mitochondrial respiratory coupling. Biochem Biophys Res Commun. 2004;314:561–4.

    Article  PubMed  CAS  Google Scholar 

  137. Zhou M, Lin BZ, Coughlin S, Vallega G, Pilch PF. UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase. Am J Physiol Endocrinol Metab. 2000;279:E622–9.

    PubMed  CAS  Google Scholar 

  138. Marin-Garcia J, Goldenthal MJ. Understanding the impact of mitochondrial defects in cardiovascular disease: a review. J Card Fail. 2002;8:347–61.

    Article  PubMed  CAS  Google Scholar 

  139. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, Pierpont ME. Biochemical and molecular basis for mitochondrial cardiomyopathy in neonates and children. J Inherit Metab Dis. 2000;23:625–33.

    Article  PubMed  CAS  Google Scholar 

  140. Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med. 1995;1:417–22.

    Article  PubMed  CAS  Google Scholar 

  141. Benit P, Slama A, Cartault F, et al. Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet. 2004;41:14–7.

    Article  PubMed  CAS  Google Scholar 

  142. Papadopoulou LC, Sue CM, Davidson MM, et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet. 1999;23:333–7.

    Article  PubMed  CAS  Google Scholar 

  143. Lodi R, Cooper JM, Bradley JL, et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci USA. 1999;96:11492–5.

    Article  PubMed  CAS  Google Scholar 

  144. Zeviani M, Spinazzola A, Carelli V. Nuclear genes in mitochondrial disorders. Curr Opin Genet Dev. 2003;13:262–70.

    Article  PubMed  CAS  Google Scholar 

  145. Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet. 1997;16:226–34.

    Article  PubMed  CAS  Google Scholar 

  146. Corbucci GG. Adaptive changes in response to acute hypoxia, ischemia and reperfusion in human cardiac cell. Minerva Anestesiol. 2000;66:523–30.

    PubMed  CAS  Google Scholar 

  147. Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC. Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA. 1991;266:1812–6.

    Article  PubMed  CAS  Google Scholar 

  148. Regula KM, Ens K, Kirshenbaum LA. Mitochondria-assisted cell suicide: a license to kill. J Mol Cell Cardiol. 2003;35:559–67.

    Article  PubMed  CAS  Google Scholar 

  149. Halestrap AP. Regulation of mitochondrial metabolism through changes in matrix volume. Biochem Soc Trans. 1994;22:522–9.

    PubMed  CAS  Google Scholar 

  150. Dos Santos P, Kowaltowski AJ, Laclau MN, et al. Mechanisms by which opening the mitochondrial ATP-sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol. 2002;283:H284–95.

    PubMed  Google Scholar 

  151. Mubagwa K, Flameng W. Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res. 2001;52:25–39.

    Article  PubMed  CAS  Google Scholar 

  152. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991;84:350–6.

    Article  PubMed  CAS  Google Scholar 

  153. Cohen MV, Baines CP, Downey JM. Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol. 2000;62:79–109.

    Article  PubMed  CAS  Google Scholar 

  154. Yang X, Cohen MV, Downey JM. Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther. 2010;24:225–34.

    Article  PubMed  CAS  Google Scholar 

  155. Maas JE, Wan TC, Figler RA, Gross GJ, Auchampach JA. Evidence that the acute phase of ischemic preconditioning does not require signaling by the A 2B adenosine receptor. J Mol Cell Cardiol. 2010;49:886–93.

    Article  PubMed  CAS  Google Scholar 

  156. Wang Y, Ashraf M. Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium. Circ Res. 1999;84:1156–65.

    Article  PubMed  CAS  Google Scholar 

  157. Ping P, Song C, Zhang J, et al. Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest. 2002;109:499–507.

    PubMed  CAS  Google Scholar 

  158. Przyklenk K, Li G, Simkhovich BZ, Kloner RA. Mechanisms of myocardial ischemic preconditioning are age related: PKC-epsilon does not play a requisite role in old rabbits. J Appl Physiol. 2003;95(6):2563–9.

    PubMed  CAS  Google Scholar 

  159. Przyklenk K, Li G, Whittaker P. No loss in the in vivo efficacy of ischemic preconditioning in middle-aged and old rabbits. J Am Coll Cardiol. 2001;38(6):1741–7.

    Article  PubMed  CAS  Google Scholar 

  160. Zhao TC, Hines DS, Kukreja RC. Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280(3):H1278–85.

    PubMed  CAS  Google Scholar 

  161. Fryer RM, Schultz JE, Hsu AK, Gross GJ. Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts. Am J Physiol. 1999;276(4 Pt 2):H1229–35.

    PubMed  CAS  Google Scholar 

  162. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res. 2001;52(2):181–98.

    Article  PubMed  CAS  Google Scholar 

  163. Das DK, Maulik N, Sato M, Ray PS. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem. 1999;196(1–2):59–67.

    Article  PubMed  CAS  Google Scholar 

  164. Krenz M, Oldenburg O, Wimpee H, et al. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular smooth muscle cells. Basic Res Cardiol. 2002;97(5): 365–73.

    Article  PubMed  CAS  Google Scholar 

  165. Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000;87(6):460–6.

    Article  PubMed  CAS  Google Scholar 

  166. Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res. 2001;89(3): 273–8.

    Article  PubMed  CAS  Google Scholar 

  167. Halmosi R, Berente Z, Osz E, Toth K, Literati-Nagy P, Sumegi B. Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system. Mol Pharmacol. 2001;59(6):1497–505.

    PubMed  CAS  Google Scholar 

  168. Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273(29):18092–8.

    Article  PubMed  CAS  Google Scholar 

  169. Ozcan C, Bienengraeber M, Dzeja PP, Terzic A. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002;282(2):H531–9.

    PubMed  CAS  Google Scholar 

  170. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res. 2002;55(3):534–43.

    Article  PubMed  CAS  Google Scholar 

  171. Yue Y, Qin Q, Cohen MV, Downey JM, Critz SD. The relative order of mK(ATP) channels, free radicals and p38 MAPK in preconditioning’s protective pathway in rat heart. Cardiovasc Res. 2002;55(3):681–9.

    Article  PubMed  CAS  Google Scholar 

  172. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med. 1999;27:42–50.

    Article  PubMed  CAS  Google Scholar 

  173. Marin-Garcia J, Goldenthal MJ. Mitochondria play a critical role in cardioprotection. J Card Fail. 2004;10:55–66.

    Article  PubMed  CAS  Google Scholar 

  174. Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res. 1997;81:1072–82.

    Article  PubMed  CAS  Google Scholar 

  175. Ning XH, Xu CS, Song YC, et al. Hypothermia preserves function and signaling for mitochondrial biogenesis during subsequent ischemia. Am J Physiol. 1998;274:H786–93.

    PubMed  CAS  Google Scholar 

  176. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res. 2003;92:139–50.

    Article  PubMed  CAS  Google Scholar 

  177. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol. 1997;80:15L–25.

    Article  PubMed  CAS  Google Scholar 

  178. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341:1276–83.

    Article  PubMed  CAS  Google Scholar 

  179. Katz AM. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc Drugs Ther. 2002;16:245–9.

    Article  PubMed  CAS  Google Scholar 

  180. Kang PM, Yue P, Liu Z, Tarnavski O, Bodyak N, Izumo S. Alterations in apoptosis regulatory factors during hypertrophy and heart failure. Am J Physiol Heart Circ Physiol. 2004;287: H72–80.

    Article  PubMed  CAS  Google Scholar 

  181. Sack MN, Kelly DP. The energy substrate switch during development of heart failure: gene regulatory mechanisms (Review). Int J Mol Med. 1998;1:17–24.

    PubMed  CAS  Google Scholar 

  182. Lehman JJ, Kelly DP. Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Fail Rev. 2002;7:175–85.

    Article  PubMed  CAS  Google Scholar 

  183. Zak R, Rabinowitz M, Rajamanickam C, Merten S, Kwiatkowska-Patzer B. Mitochondrial proliferation in cardiac hypertrophy. Basic Res Cardiol. 1980;75:171–8.

    Article  PubMed  CAS  Google Scholar 

  184. Lucas DT, Aryal P, Szweda LI, Koch WJ, Leinwand LA. Alterations in mitochondrial function in a mouse model of hypertrophic cardiomyopathy. J Physiol Heart Circ Physiol. 2003;284:H575–83.

    CAS  Google Scholar 

  185. Marin-Garcia J, Goldenthal MJ, Moe GW. Mitochondrial pathology in cardiac failure. Cardiovasc Res. 2001;49:17–26.

    Article  PubMed  CAS  Google Scholar 

  186. Blair E, Redwood C, Ashrafian H, et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001;10:1215–20.

    Article  PubMed  CAS  Google Scholar 

  187. Tardiff JC, Hewett TE, Palmer BM, et al. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104: 469–81.

    Article  PubMed  CAS  Google Scholar 

  188. Fananapazir L, Dalakas MC, Cyran F, Cohn G, Epstein ND. Missense mutations in the beta-myosin heavy-chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci USA. 1993;90:3993–7.

    Article  PubMed  CAS  Google Scholar 

  189. Sayen MR, Gustafsson AB, Sussman MA, Molkentin JD, Gottlieb RA. Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. Am J Physiol Cell Physiol. 2003;284:C562–70.

    PubMed  CAS  Google Scholar 

  190. Shioi T, McMullen JR, Kang PM, et al. Akt/protein kinase B promotes organ growth in transgenic mice. Mol Cell Biol. 2002;22:2799–809.

    Article  PubMed  CAS  Google Scholar 

  191. Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV, Napoli C, Sadoshima J, Croce CM, Ross J. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA. 2002;17:12333–8.

    Article  CAS  Google Scholar 

  192. Liu T, Lai H, Wu W, Chinn S, Wang PH. Developing a strategy to define the effects of insulin-like growth factor-1 on gene expression profile in cardiomyocytes. Circ Res. 2001;88:1231–8.

    Article  CAS  Google Scholar 

  193. Sanguinetti MC, Bennett PB. Antiarrhythmic drug target choices and screening. Circ Res. 2003;93:491–9.

    Article  PubMed  CAS  Google Scholar 

  194. Ito H, Taniyama Y, Iwakura K, et al. Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. J Am Coll Cardiol. 1999;33:654–60.

    Article  PubMed  CAS  Google Scholar 

  195. Shoffner JM, Wallace DC. Oxidative phosphorylation diseases and mitochondrial DNA mutations: diagnosis and treatment. Annu Rev Nutr. 1994;14:535–68.

    Article  PubMed  CAS  Google Scholar 

  196. Rustin P, von Kleist-Retzow JC, Chantrel-Groussard K, Sidi D, Munnich A, Rotig A. Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet. 1999;354:477–9.

    Article  PubMed  CAS  Google Scholar 

  197. Wallhaus TR, Taylor M, DeGrado TR, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation. 2001;103:2441–6.

    Article  PubMed  CAS  Google Scholar 

  198. Pollitt RJ. Disorders of mitochondrial long-chain fatty acid oxidation. J Inherit Metab Dis. 1995;18:473–90.

    Article  PubMed  CAS  Google Scholar 

  199. Pepe S, Tsuchiya N, Lakatta EG, Hansford RG. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH. Am J Physiol. 1999;276: H149–58.

    PubMed  CAS  Google Scholar 

  200. Ennis IL, Li RA, Murphy AM, Marban E, Nuss HB. Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. J Clin Invest. 2002;109:393–400.

    PubMed  CAS  Google Scholar 

  201. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). Heart Mitochondria: Receivers and Transmitters of Signals. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics