Skip to main content

Data Assimilation in Brain Tumor Models

  • Chapter
  • First Online:
Mathematical Methods and Models in Biomedicine

Abstract

A typical problem in applied mathematics and science is to estimate the future state of a dynamical system given its current state. One approach aimed at understanding one or more aspects determining the behavior of the system is mathematical modeling. This method frequently entails formulation of a set of equations, usually a system of partial or ordinary differential equations. Model parameters are then measured from experimental data or estimated from computer simulation or other methods, for example chi-squared parameter optimization as done in[26] or genetic algorithms which are frequently used in neuroscience [33]. Solutions to the model are then studied through mathematical analysis and numerical simulation usually for qualitative fit to the dynamical system of interest and any relative time-series data that is available. While mathematical modeling can provide meaningful insight, it may have limited predictive value due to idealized assumptions underlying the model, measurement error in experimental data and parameters, and chaotic behavior in the system. In this chapter we explore a different approach focused on optimal state estimation given a model and observational data of a biological process, while accounting for the relative uncertainty in both. The case explored here is the growth and spread of glioblastoma multiforme (GBM), a very aggressive form of glioma brain tumor which remains extremely difficult to manage clinically. The method employed is different from other approaches used in biology in that it is independent of the mathematical model and seeks an optimal initial condition. This is in contrast to other techniques such as those discussed in [21], which are model dependent and seek to find an optimal model parameterization given the observations and uncertainties in the system of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The geopotential, Φ(z), is the work needed to raise a unit mass a vertical distance z from mean sea level and accounts for the variation of the earth’s gravitational field with latitude and elevation. The geopotential height is Φ(z) ∕ g 0, where \({g}_{0} = 9.80665\,{\mbox{ m\,s}}^{-2}\) is the global average of gravitational acceleration at mean sea level. For more details, see Chap. 1 of [12].

References

  1. Amberger, V.R., Hensel, T., Ogata, T.N.,and Schwab, M.E.: Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res., 58, 149–158 (1998)

    Google Scholar 

  2. http://www.bic.mni.mcgill.ca/brainweb/.

  3. Clatz, O., Sermesant, M., Bondiau, P.-Y., Delingette, H., Warfield, S.K., Malandian, G., and Ayache, N.: Realistic simulation of the 3d growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging, 24, 1334–1346 (2005)

    Article  Google Scholar 

  4. Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., and Evans, A.C.: BrainWeb: Online Interface to a 3D MRI Simulated Brain Database NeuroImage, vol.5, no.4, part 2/4, S425, 1997 – Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain, Copenhagen, (1997)

    Google Scholar 

  5. Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J.G., Kabani, N.J., Holmes, C.J., and Evans, A.C.: Design and Construction of a Realistic Digital Brain Phantom IEEE Transactions on Medical Imaging, vol.17, No.3, p.463–468, (1998)

    Google Scholar 

  6. Demuth, T. and Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70, 217–228 (2004)

    Article  Google Scholar 

  7. Eikenberry, S.E., Sankar, T., Preul, M.C., Kostelich, E.J., Thalhauser, C.J., and Kuang, Y.: Virtual glioblastoma: growth, migration and treatment in a three-dimensional mathematical model. Cell Prolif. 42, 511–528 (2009)

    Article  Google Scholar 

  8. Evensen, G.:Data Assimilation: The Ensemble Kalman Filter, Springer (2006)

    Google Scholar 

  9. Gelb A. (ed): Appliede Optimal State Estimation. MIT Press, Cambridge, Ma., (1974)

    Google Scholar 

  10. Grossman, A., Helbich, T.H., Kuriyama, N., Ostrowitzki, S., Roberts, T. P., Shames, D.M., van Bruggen, N., Wendland, M.F., Israel, M.A., and Brasch, R.C.: Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J. Magn. Reson. Imaging, 15, 233–240 (2002)

    Article  Google Scholar 

  11. Hoffman, R.N, Ponte, R.M., Kostelich, E.J., Blumberg, A., Szunyogh, I., Vinogradov, S.V., and Henderson, J.M.: A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor. J. Atmos. Ocean Tech., 25, 1638–1656 (2008)

    Google Scholar 

  12. Horton, J.R.: An Introduction to dynamic meteorology. 4th ed. Amsterdam: Elsevier Academic Press (2004)

    Google Scholar 

  13. Hunt, B.R., Kostelich, E.J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D: J. Basic Eng., 82, 35–45 (1960)

    Article  Google Scholar 

  15. Kalman, R.E., and Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME Ser. D: J. Basic Eng., 83, 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  16. Kalnay, E.: Atmospheric modeling, data assimilation, and Predictability. Cambridge University Press (2003)

    Google Scholar 

  17. Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: An Extensible MRI Simulator for Post-Processing Evaluation. Visualization in Biomedical Computing (VBC’96). Lecture Notes in Computer Science, vol. 1131. Springer-Verlag, 135–140 (1996)

    Google Scholar 

  18. Kwan, R.K.-S., Evans, A.C., and Pike, G.B.: MRI simulation-based evaluation of image-processing and classification methods IEEE Transactions on Medical Imaging. 18(11), 1085–97 Nov (1999)

    Google Scholar 

  19. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci., 20, 130–141 (1963)

    Article  Google Scholar 

  20. Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333 (1965)

    Article  Google Scholar 

  21. Marino, S., Hogue, I.B., Ray, C.J., and Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol., 254, 178-196 (2008)

    Article  Google Scholar 

  22. Mohamed A., and Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan J.S., Gerig, G. (eds) 8th International Conference on Medical Image Computing and Computer Assisted Intervention(MICCAI). Springer, Palm Springs CA 400–408 (2005)

    Google Scholar 

  23. Norden, A.D., and Wen, P.Y.: Glioma therapy in adults. Neurologist. 12, 279–292 (2006)

    Article  Google Scholar 

  24. Patil, D.J., Hunt, B.R., Kalnay, E., Yorke, J.A., and Ott E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881 (2001)

    Article  Google Scholar 

  25. Rijpkema, M., Kaanders, J.H., Joosten, F.B., van der Kogel, A.J., and Heerschap, A.: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J. Magn. Reson. Imaging, 14, 457–463 (2001)

    Article  Google Scholar 

  26. Stein A.M., Demuth T., Mobley D., Berens M., and Sander L.: A mathematical model of glioblastoma tumor spheroid invasion in a 3D in vitro experiment. Biophys. J., 92, 356–365 (2007)

    Article  Google Scholar 

  27. Swanson, K.R., Alvord, Jr., E.C., and Murray, J.D.: A quantitative model of differential motility of gliomas in white and grey matter. Cell Prolif., 33, 317–329 (2000)

    Article  Google Scholar 

  28. Swanson, K.R., Bridge C., Murray, J.D., and Alvord, E.C.: Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci., 216, 1–10 (2003)

    Article  Google Scholar 

  29. Swanson, K.R., Rostomily, R.C., and Alvord, Jr., E.C.: A mathematical modeling tool for predicting survival of individual patients following resection of glioblastoma: A proof of principle. Brit. J. Cancer, 98, 113–119 (2008)

    Article  Google Scholar 

  30. Szunyogh, I., Kostelich, E.J., Gyarmati, G., Kalnay, E., Hunt, B.R., Ott, E., Satterfield, E., and Yorke, J.A.: A local ensemble Kalman filter data assimilation system for the NCEP global model. Tellus A, 60, 113–130 (2008)

    Google Scholar 

  31. Talairach, J. and Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988)

    Google Scholar 

  32. Tian, J.P., Friedman, A., Wang, J., and Chiocca, E.A.: Modeling the effects of resection, radiation and chemotherapy. J. Neurooncol, 91, 287–293 (2009)

    Article  Google Scholar 

  33. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge, MA (1999)

    MATH  Google Scholar 

  34. Wang, X., Bishop, C.H., and Julier, S.J.: Which is better, an ensemble of positive negative pairs or a centered spherical simplex ensemble?. Mon. Wea. Rev., 132, 1590–1605 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Portions of this work were funded by the Barrow Neurological Institute Women’s Foundation and by funds from the Newsome Family Endowed Chair of Neurosurgery Research held by Dr. Preul. J.M. was supported in part by an Achievement Reward for College Scientists Scholarship. Y.K. was supported by NSF grants DMS-0436341 and DMS-0920744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua McDaniel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McDaniel, J. et al. (2013). Data Assimilation in Brain Tumor Models. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_9

Download citation

Publish with us

Policies and ethics