Skip to main content

A Multiscale Approach Leading to Hybrid Mathematical Models for Angiogenesis: The Role of Randomness

  • Chapter
  • First Online:
Mathematical Methods and Models in Biomedicine

Abstract

In biology and medicine we may observe a wide spectrum of formation of patterns, usually due to self-organization phenomena. This may happen at any scale; from the cellular scale of embryonic tissue formation, wound healing or tumor growth, and angiogenesis to the much larger scale of animal grouping. Patterns are usually explained in terms of a collective behavior driven by “forces,” either external and/or internal, acting upon individuals (cells or organisms). In most of these organization phenomena, randomness plays a major role; here we wish to address the issue of the relevance of randomness as a key feature for producing nontrivial geometric patterns in biological structures. As working examples we offer a review of two important case studies involving angiogenesis, i.e., tumor-driven angiogenesis [7] and retina angiogenesis [8]. In both cases the reactants responsible for pattern formation are the cells organizing as a capillary network of vessels, and a family of underlying fields driving the organization, such as nutrients, growth factors, and alike [18, 19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, A.R.A., Chaplain, M.A.: Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)

    Article  MATH  Google Scholar 

  2. Birdwell, C., Brasier, A., Taylor, L.: Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun. 97, 574–81 (1980)

    Article  Google Scholar 

  3. Byrne, H., Chaplain, M.: Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57, 461-486 (1995)

    MATH  Google Scholar 

  4. Capasso V., Bakstein D.: An Introduction to Continuous-Time Stochastic Processes - Theory, Models and Applications to Finance, Biology and Medicine. Birkhäuser, Boston (2005)

    MATH  Google Scholar 

  5. Capasso, V., Morale, D.: Rescaling stochastic processes: Asymptotics. In: Multiscale Problems in the Life Sciences From Microscopic to Macroscopic, Lecture Notes in Mathematics / Fondazione C.I.M.E., vol. 1940, pp. 91–146. Springer, Heidelberg (2008)

    Google Scholar 

  6. Capasso, V., Morale, D.: Asymptotic behavior of a system of stochastic particles subject to nonlocal interactions. Stoch. Anal. And Appl. 27(3), 574–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capasso, V., Morale, D.: Stochastic modelling of tumour-induced angiogenesis. J. Math. Biol. 58, 219–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Capasso, V., Morale, D., Facchetti, G.: The role of stochasticity for a model of retinal angiogenesis. IMA J. Appl. Math. (2012) (In press)

    Google Scholar 

  9. Capasso, V., Micheletti, A., Morale, D.: Stochastic geometric models, and related statistical issues in tumour-induced angiogenesis. Math. Biosci. 214, 20–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Champagnat, N., Méléard, S.: Invasion and adaptive evolution for individual-based spatially structured populations. J. Math. Biol. 55, 147–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaplain, M.: The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor. 43, 387–402 (1995)

    Article  Google Scholar 

  12. Chaplain, M.A.J., Anderson, A.R.A.: Modelling the growth and form of capillary networks. In: Chaplain, M.A.J., et al. (eds.) On Growth and Form. Spatio-temporal Pattern Formation in Biology. Wiley, Chichester (1999)

    Google Scholar 

  13. Chaplain, M., Stuart, A.: A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168 (1993)

    Article  MATH  Google Scholar 

  14. Corada, M., Zanetta,L., Orsenigo, F., Breviario, F., Lampugnani, M.G., Bernasconi, S., Liao, F., Hicklin, D.J., Bohlen, P., Dejana, E. : A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100, 905–911 (2002)

    Article  Google Scholar 

  15. Davis, B.: Reinforced random walk. Prob. Theor. Rel. Fields 84, 203–22 (1990)

    Article  MATH  Google Scholar 

  16. Durrett, R., Levin, S.A.: The importance of being discrete (and spatial). Theor. Pop. Biol. 46, 363–394 (1994)

    Article  MATH  Google Scholar 

  17. Folkman, J., Klagsbrun, M.: Angiogenic factors. Science 235, 442–447 (1987)

    Google Scholar 

  18. Fruttiger, M.: Development of retinal vasculature. Angiogenesis 10, 177–88 (2007)

    Article  Google Scholar 

  19. Gariano, R.F., Gardner, T.W.: Retinal angiogenesis in development and disease. Nature 438, 960–966 (2003)

    Article  Google Scholar 

  20. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundvkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitao, K., Shima, D., Betsholtz, C.: VEGF guides angiogenic sprouting utilizing tip cell filopodia. J. Cell Biol. 161, 1163–1177 ( 2003)

    Article  Google Scholar 

  21. Guan K.L., Rao, Y.: Signalling mechanisms mediating neuronal responses to guidance cues. Nature Rev. Neurosci. 4, 941–956 (2003) doi:10.1038/nrn1254

    Article  Google Scholar 

  22. Gueron, S., Levin, S.A.: The dynamics of group formation. Math. Biosci. 128, 243–264 (1995)

    Article  MATH  Google Scholar 

  23. Levine, H.A., Sleeman, B.D., Nilsen-Hamilton, M.: Mathematical modelling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liotta, L., Saidel, G., Kleinerman, J.: Diffusion model of tumor vascularization. Bull. Math. Biol. 39, 117–128 (1977)

    Google Scholar 

  25. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dynamic tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. J. Theor. Biol. 241, 564–589 (2006)

    Article  MathSciNet  Google Scholar 

  26. Meleard, S., Fernandez, B.: Asymptotic behaviour for interacting diffusion processes with space-time random birth. Bernoulli 6, 1–21 (2000)

    Article  MathSciNet  Google Scholar 

  27. Morale, D., Capasso, V., Oelschläger, K.: An interacting particle system modelling aggregation behavior: From individuals to populations. J. Math. Biol. 50, 49–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oelschläger, K.: A law of large numbers for moderately interacting diffusion processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 69, 279–322 (1985)

    Article  MATH  Google Scholar 

  29. Oelschläger, K.: On the derivation of reaction-diffusion equations as lilit dynamics of systems of moderately interacting stochastic processes. Prob. Th. Rel. Fields 82, 565–586 (1989)

    Article  MATH  Google Scholar 

  30. Okubo, A.: Dynamical aspects of animal grouping: Swarms, school, flocks and herds. Adv. BioPhys. 22, 1–94 (1986)

    Article  Google Scholar 

  31. Okubo, A., Levin, S.: Diffusion and ecological problems: Modern Perspectives. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  32. Orme, M., Chaplain, M.: A mathematical model of the first steps of tumour-related angiogenesis: Capillary sprout formation and secondary branching. IMA J. Math. Appl. Med. 14, 189–205 (1996)

    Article  Google Scholar 

  33. Plank, M.J., Sleeman, B.D.: A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. IMA J. Math. Med. Biol. 20, 135–181 (2003)

    Article  MATH  Google Scholar 

  34. Plank, M.J., Sleeman, B.D.: Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol. 66(6), 1785–1819 (2004)

    Article  MathSciNet  Google Scholar 

  35. Rejniak, K.A., Anderson, A.R.A.: Hybrid models of tumor growth. Wiley Interdiscipl. Rev. Syst. Biol. Med. 3, 115–125 (2011) doi: 10.1002/wsbm.102

    Article  Google Scholar 

  36. Stéphanou, A., McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model. 44, 96–123 (2006)

    Article  MATH  Google Scholar 

  37. Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)

    Article  Google Scholar 

  38. Stone, J., Itin, A., Alon, T., Peter, J., Gnessin, H., Chan-Ling, T., Keshet, E.: Development of retinal vasculature is mediated by hypoxia induced vascular endothelial growth factor (VEGF). J. Neurosci. 15, 4738–4747 (1995)

    Google Scholar 

  39. Sznitman, A.S.: Topics in propagation of chaos. Ecole d’Ete de Probabilites de Saint-Flour XIX, 1989. In: Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991)

    Google Scholar 

  40. Sun, S., Wheeler, M.F., Obeyesekere, M., Patrick, C.W. Jr.: A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol. 67, 313–337 (2005)

    Article  MathSciNet  Google Scholar 

  41. Sun, S., Wheeler, M.F., Obeyesekere, M., Patrick, C.W. Jr.: A Multiscale angiogenesis modeling using mixed finite element methods. SIAM Multiscale Model. Simul. 4, 1137–1167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. West, H., Richardson, W.D., Fruttiger, M.: Stabilization of the retinal vascular network by reciprocal feedback between blood vessel and astrocytes. Development 132, 1855–1862 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Capasso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, V., Morale, D. (2013). A Multiscale Approach Leading to Hybrid Mathematical Models for Angiogenesis: The Role of Randomness. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_4

Download citation

Publish with us

Policies and ethics