Skip to main content

Evolutionary Principles in Viral Epitopes

  • Chapter
  • First Online:
Mathematical Methods and Models in Biomedicine

Abstract

The infection of a cell by a virus elicits a Cytotoxic T Lymphocyte (CTL) response to viral peptides presented by the Major Histocompatibility Complex class I molecules [6, 20]. Such a CTL response plays a critical role in the host’s anti-viral immune response [39]. This role is suggested by studies indicating a drop of viral loads and the relief of the acute infection symptoms following the emergence of virus-specific CTLs [8], as well as by data from CTL depleted animal models [33, 41]. The CTL response is also associated with a rapid selection of viral CTL escape variants [23, 34]. In the last few years we have applied an immunomic methodology combining genomic data and multiple bioinformatic tools to study the anti-viral CTL response [5, 19, 28, 35, 38, 55–57] and found that viruses selectively mutate proteins inducing the highest danger to their survival. We here summarize these results, and propose some general conclusions regarding the selective forces affecting viruses and their human host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abendroth, A., Arvin, A.: Varicella-zoster virus immune evasion. Immunol. Rev. 168, 143–156 (1999)

    Article  Google Scholar 

  2. Abendroth, A., Arvin, A.: Immune evasion mechanisms of varicella-zoster virus. Arch. Virol. Suppl. (17), 99–107 (2001)

    Google Scholar 

  3. Addo, M.M., Yu, X.G., Rosenberg, E.S., Walker, B.D., Altfeld, M.: Cytotoxic t-lymphocyte (ctl) responses directed against regulatory and accessory proteins in hiv-1 infection. DNA Cell Biol. 21(9), 671–678 (2002)

    Article  Google Scholar 

  4. Agranovich, A., Vider-Shalit, T., Louzoun, Y.: Optimal viral immune surveillance evasion strategies. Theor. Popul. Biol. 80(4), 233–243 (2011)

    Article  Google Scholar 

  5. Almani, M., Raffaeli, S., Vider-Shalit, T., Tsaban, L., Fishbain, V., Louzoun, Y.: Human self-protein cd8+ t-cell epitopes are both positively and negatively selected. Eur. J. Immunol. 39(4), 1056–1065 (2009)

    Article  Google Scholar 

  6. Ambagala, A.P., Solheim, J.C., Srikumaran, S.: Viral interference with mhc class i antigen presentation pathway: The battle continues. Vet. Immunol. Immunopathol. 107(1-2), 1–15 (2005)

    Article  Google Scholar 

  7. Betts, M.R., Yusim, K., Koup, R.A.: Optimal antigens for hiv vaccines based on cd8+ t response, protein length, and sequence variability. DNA Cell Biol. 21(9), 665–670 (2002)

    Article  Google Scholar 

  8. Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M., Oldstone, M.B.: Virus-specific cd8+ cytotoxic t-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68(9), 6103–6110 (1994)

    Google Scholar 

  9. Burgevin, A., Saveanu, L., Kim, Y., Barilleau, E., Kotturi, M., Sette, A., van Endert, P., Peters, B.: A detailed analysis of the murine tap transporter substrate specificity. PLoS One 3(6), e2402 (2008)

    Article  Google Scholar 

  10. Cattaneo, R., Will, H., Schaller, H.: Hepatitis b virus transcription in the infected liver. EMBO J. 3(9), 2191–2196 (1984)

    Google Scholar 

  11. Chang, C., Enders, G., Sprengel, R., Peters, N., Varmus, H.E., Ganem, D.: Expression of the precore region of an avian hepatitis b virus is not required for viral replication. J. Virol. 61(10), 3322–3325 (1987)

    Google Scholar 

  12. Chen, H.S., Kew, M.C., Hornbuckle, W.E., Tennant, B.C., Cote, P.J., Gerin, J.L., Purcell, R.H., Miller, R.H.: The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host. J. Virol. 66(9), 5682–5684 (1992)

    Google Scholar 

  13. Coffin, J.M.: Hiv population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science 267(5197), 483–489 (1995)

    Article  Google Scholar 

  14. Dandri, M., Schirmacher, P., Rogler, C.E.: Woodchuck hepatitis virus x protein is present in chronically infected woodchuck liver and woodchuck hepatocellular carcinomas which are permissive for viral replication. J. Virol. 70(8), 5246–5254 (1996)

    Google Scholar 

  15. Dourmishev, L.A., Dourmishev, A.L., Palmeri, D., Schwartz, R.A., Lukac, D.M.: Molecular genetics of kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev. 67(2), 175–212 (2003)

    Article  Google Scholar 

  16. Enders, G.H., Ganem, D., Varmus, H.: Mapping the major transcripts of ground squirrel hepatitis virus: The presumptive template for reverse transcriptase is terminally redundant. Cell 42(1), 297–308 (1985)

    Article  Google Scholar 

  17. Fields, B.N., Knipe, D.M., Howley, P.M.: Fields Virology, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia (2007)

    Google Scholar 

  18. Garcia, P.D., Ou, J.H., Rutter, W.J., Walter, P.: Targeting of the hepatitis b virus precore protein to the endoplasmic reticulum membrane: After signal peptide cleavage translocation can be aborted and the product released into the cytoplasm. J. Cell Biol. 106(4), 1093–1104 (1988)

    Article  Google Scholar 

  19. Ginodi, I., Vider-Shalit, T., Tsaban, L., Louzoun, Y.: Precise score for the prediction of peptides cleaved by the proteasome. Bioinformatics 24(4), 477–483 (2008)

    Article  Google Scholar 

  20. Gulzar, N., Copeland, K.F.: Cd8+ t-cells: Function and response to hiv infection. Curr. HIV Res. 2(1), 23–37 (2004)

    Article  Google Scholar 

  21. Haase, A.T.: Population biology of hiv-1 infection: Viral and cd4+ t cell demographics and dynamics in lymphatic tissues. Ann. Rev. Immunol. 17(1), 625–656 (1999)

    Article  Google Scholar 

  22. Haviv, I., Shamay, M., Doitsh, G., Shaul, Y.: Hepatitis b virus px targets tfiib in transcription coactivation. Mol. Cell Biol. 18(3), 1562–1569 (1998)

    Google Scholar 

  23. Howley, P.M., Roizman, B., Straus, S.E., Martin, M.A., Griffin, D.E.: Fields Virology, 4th edn. Lippincott Williams & Wilkins (LWW), Philadelphia (2001)

    Google Scholar 

  24. Itzhack, R., Louzoun, Y.: Random distance dependent attachment as a model for neural network generation in the caenorhabditis elegans. Bioinformatics 26(5), 647–652 (2010)

    Article  Google Scholar 

  25. Karush, W.: Minima of functions of several variables with inequalities as side constraints. M.sc. dissertation, Univ. of Chicago (1939)

    Google Scholar 

  26. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  27. Kiepiela, P., Leslie, A.J., Honeyborne, I., Ramduth, D., Thobakgale, C., Chetty, S., Rathnavalu, P., Moore, C., Pfafferott, K.J., Hilton, L., Zimbwa, P., Moore, S., Allen, T., Brander, C., Addo, M.M., Altfeld, M., James, I., Mallal, S., Bunce, M., Barber, L.D., Szinger, J., Day, C., Klenerman, P., Mullins, J., Korber, B., Coovadia, H.M., Walker, B.D., Goulder, P.J.: Dominant influence of hla-b in mediating the potential co-evolution of hiv and hla. Nature 432(7018), 769–775 (2004)

    Article  Google Scholar 

  28. Kovjazin, R., Volovitz, I., Daon, Y., Vider-Shalit, T., Azran, R., Tsaban, L., Carmon, L., Louzoun, Y.: Signal peptides and trans-membrane regions are broadly immunogenic and have high cd8+ t cell epitope densities: Implications for vaccine development. Mol. Immunol. 48(8), 1009–1018 (2011)

    Article  Google Scholar 

  29. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press (1951)

    Google Scholar 

  30. Kuiken, C., Korber, B., Shafer, R.W.: Hiv sequence databases. AIDS Rev. 5(1), 52–61 (2003)

    Google Scholar 

  31. Kumanovics, A., Takada, T., Lindahl, K.F.: Genomic organization of the mammalian mhc. Annu. Rev. Immunol. 21, 629–657 (2003)

    Article  Google Scholar 

  32. Lavi, O., Klement, E., Louzoun, Y.: Effect of vaccination in environmentally induced diseases. Bull. Math. Biol. 73(5), 1101–1117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Letvin, N.L., Schmitz, J.E., Jordan, H.L., Seth, A., Hirsch, V.M., Reimann, K.A., Kuroda, M.J.: Cytotoxic t lymphocytes specific for the simian immunodeficiency virus. Immunol. Rev. 170, 127–134 (1999)

    Article  Google Scholar 

  34. Lichterfeld, M., Yu, X.G.,  Le Gall, S., Altfeld, M.: Immunodominance of hiv-1-specific cd8(+) t-cell responses in acute hiv-1 infection: At the crossroads of viral and host genetics. Trends Immunol. 26(3), 166–171 (2005)

    Article  Google Scholar 

  35. Louzoun, Y., Vider, T., Weigert, M.: T-cell epitope repertoire as predicted from human and viral genomes. Mol. Immunol. 43(6), 559–569 (2006)

    Article  Google Scholar 

  36. Luenberger, D.G., Ye, Y.: Linear and nonlinear programming. International Series in Operations Research & Management Science, vol. 116, 3rd edn. Springer, New York (2008)

    Google Scholar 

  37. Maguire, H.F., Hoeffler, J.P., Siddiqui, A.: Hbv x protein alters the dna binding specificity of creb and atf-2 by protein-protein interactions. Science 252(5007), 842–844 (1991)

    Article  Google Scholar 

  38. Maman, Y., Blancher, A., Benichou, J., Yablonka, A., Efroni, S., Louzoun, Y.: Immune-induced evolutionary selection focused on a single reading frame in overlapping hepatitis b virus proteins. J. Virol. 85(9), 4558–4566 (2011)

    Article  Google Scholar 

  39. McMichael, A.J., Gotch, F.M., Noble, G.R., Beare, P.A.: Cytotoxic t-cell immunity to influenza. N Engl. J. Med. 309(1), 13–17 (1983)

    Article  Google Scholar 

  40. Miller, M.M., Bacon, L.D., Hala, K., Hunt, H.D., Ewald, S.J., Kaufman, J., Zoorob, R., Briles, W.E.: 2004 nomenclature for the chicken major histocompatibility (b and y) complex. Immunogenetics 56(4), 261–279 (2004)

    Article  Google Scholar 

  41. Negri, D.R., Borghi, M., Baroncelli, S., Macchia, I., Buffa, V., Sernicola, L., Leone, P., Titti, F., Cara, A.: Identification of a cytotoxic t-lymphocyte (ctl) epitope recognized by gag-specific ctls in cynomolgus monkeys infected with simian/human immunodeficiency virus. J. Gen. Virol. 87(Pt 11), 3385–3392 (2006)

    Article  Google Scholar 

  42. Ou, J.H., Laub, O., Rutter, W.J.: Hepatitis b virus gene function: The precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. Proc. Natl. Acad. Sci. USA 83(6), 1578–1582 (1986)

    Article  Google Scholar 

  43. Ou, J.H., Yeh, C.T., Yen, T.S.: Transport of hepatitis b virus precore protein into the nucleus after cleavage of its signal peptide. J. Virol. 63(12), 5238–5243 (1989)

    Google Scholar 

  44. Princiotta, M.F., Finzi, D., Qian, S.B., Gibbs, J., Schuchmann, S., Buttgereit, F., Bennink, J.R., Yewdell, J.W.: Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18(3), 343–354 (2003)

    Article  Google Scholar 

  45. Pudney, V.A., Leese, A.M., Rickinson, A.B., Hislop, A.D.: Cd8+ immunodominance among epstein-barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. J. Exp. Med. 201(3), 349–360 (2005)

    Article  Google Scholar 

  46. Rehermann, B., Nascimbeni, M.: Immunology of hepatitis b virus and hepatitis c virus infection. Nat. Rev. Immunol. 5(3), 215–229 (2005)

    Article  Google Scholar 

  47. Robinson, J., Waller, M.J., Parham, P., de Groot, N., Bontrop, R., Kennedy, L.J., Stoehr, P., Marsh, S.G.: Imgt/hla and imgt/mhc: Sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 31(1), 311–314 (2003)

    Article  Google Scholar 

  48. Rock, K.L., York, I.A., Saric, T., Goldberg, A.L.: Protein degradation and the generation of mhc class i-presented peptides. Adv. Immunol. 80, 1–70 (2002)

    Article  Google Scholar 

  49. Sirma, H., Weil, R., Rosmorduc, O., Urban, S., Israel, A., Kremsdorf, D., Brechot, C.: Cytosol is the prime compartment of hepatitis b virus x protein where it colocalizes with the proteasome. Oncogene 16(16), 2051–2063 (1998)

    Article  Google Scholar 

  50. Sykulev, Y., Cohen, R.J., Eisen, H.N.: The law of mass action governs antigen-stimulated cytolytic activity of cd8+ cytotoxic t lymphocytes. Proc. Natl. Acad. Sci. USA 92(26), 11990–11992 (1995)

    Article  Google Scholar 

  51. Tanaka, K., Tsurumi, C.: The 26s proteasome: Subunits and functions. Mol. Biol. Rep. 24(1-2), 3–11 (1997)

    Article  Google Scholar 

  52. Untersuchungen über die chemischen Affinitäten. Abhandlungen aus den Jahren 1864 1867 1879. Ostwald’s Klassiker der exakten Wissenschaften nr. 104. 1899 Leipzig: W. Engelmann. 182. Guldberg, C.M.

    Google Scholar 

  53. van Rompay, K.K.A., Dailey, P.J., Tarara, R.P., Canfield, D.R., Aguirre, N.L., Cherrington, J.M., Lamy, P.D., Bischofberger, N., Pedersen, N.C., Marthas, M.L.: Early short-term 9-[2-(r)-(phosphonomethoxy) propyl] adenine treatment favorably alters the subsequent disease course in simian immunodeficiency virus-infected newborn rhesus macaques. J. Virol. 73(4), 2947 (1999)

    Google Scholar 

  54. Vider-Shalit, T., Louzoun, Y.: Mhc-i prediction using a combination of t cell epitopes and mhc-i binding peptides. J. Immunol. Meth. 374(1-2), 43–46 (2010)

    Google Scholar 

  55. Vider-Shalit, T., Fishbain, V., Raffaeli, S., Louzoun, Y.: Phase-dependent immune evasion of herpesviruses. J. Virol. 81(17), 9536–9545 (2007)

    Article  Google Scholar 

  56. Vider-Shalit, T., Almani, M., Sarid, R., Louzoun, Y.: The hiv hide and seek game: An immunogenomic analysis of the hiv epitope repertoire. AIDS 23(11), 1311–1318 (2009)

    Article  Google Scholar 

  57. Vider-Shalit, T., Sarid, R., Maman, K., Tsaban, L., Levi, R., Louzoun, Y.: Viruses selectively mutate their cd8+ t-cell epitopes–a large-scale immunomic analysis. Bioinformatics 25(12), i39–44 (2009)

    Article  Google Scholar 

  58. (WHO), W.H.O. http://www.who.int/mediacentre/factsheets/fs204/en/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Louzoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maman, Y., Agranovich, A., Shalit, T.V., Louzoun, Y. (2013). Evolutionary Principles in Viral Epitopes. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_3

Download citation

Publish with us

Policies and ethics