Skip to main content

Saturable Fractal Pharmacokinetics and Its Applications

  • Chapter
  • First Online:
Mathematical Methods and Models in Biomedicine

Abstract

In this chapter we discuss an application of fractal kinetics under steady state conditions to model the enzymatic elimination of a drug from the body. A one-compartment model following fractal Michaelis–Menten kinetics under a steady state is developed and applied to concentration-time data for the cardiac drug mibefradil in dogs. The model predicts a fractal reaction order and a power law asymptotic time-dependence of the drug concentration. A mathematical relationship between the fractal reaction order and the power law exponent is derived. The goodness-of-fit of the model is assessed and compared to that of four other models suggested in the literature. The proposed model provides the best fit to the data. In addition, it correctly predicts the power law shape of the tail of the concentration-time curve. The new fractal reaction order can be explained in terms of the complex geometry of the liver, the organ responsible for eliminating the drug. Furthermore, we investigate the potential for identifying global characteristics in the pharmacokinetics of the anticancer drug paclitaxel. An analysis of data in the literature yields both clearance curves and dose-dependency curves that are accurately described by power laws with similar exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anacker, L.W., Kopelman, R.: Fractal chemical kinetics: Simulations and experiments. J. Chem. Phys. 81, 6402–6403 (1984)

    Article  Google Scholar 

  2. Anacker, L.W., Kopelman, R.: Steady-state chemical kinetics on fractals: Segregation of reactants. Phys. Rev. Lett. 58, 289–291 (1987)

    Article  Google Scholar 

  3. Anderson, J., Osborn, S.B., Tomlinson, R.W., Weinbren, I.: Some applications of power law analysis to radioisotope studies in man. Phys. Med. Biol. 18, 287–295 (1963)

    Article  Google Scholar 

  4. Aranda, J.S., Salgado, E., Muñoz-Diosdado A.: Multifractality in intracellular enzymatic reactions. J. Theor. Biol. 240, 209–217 (2006)

    Article  Google Scholar 

  5. Bassingthwaighte, J., Liebovitch, L.S., West, B.J.: Fractal Physiology. Oxford University Press, New York (1994)

    Google Scholar 

  6. Bassingthwaighte, J.B., Beard, D.A.: Fractal 15O-labeled water washout from the heart. Circ. Res. 77, 1212–1221 (1995)

    Article  Google Scholar 

  7. Berry, H.: Monte carlo simulations of enzyme reactions in two dimensions: Fractal kinetics and spatial segregation. Biophys. J. 83, 1891–1901 (2002)

    Article  Google Scholar 

  8. Campra, J.L., Reynolds, T.B.: The hepatic circulation. In: Arias, I.M., Popper, H., Schachter, D., Shafritz, D.A. (eds) The Liver: Biology and Pathobiology. Raven Press, New York (1982)

    Google Scholar 

  9. Chelminiak, P., Marsh, R.E., Tuszyński J.A., Dixon, J.M., Vos, K.J.E.: Asymptotic time dependence in the fractal pharmacokinetics of a two-compartment model. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 72, 031903 (2005)

    Google Scholar 

  10. Chelminiak, P., Dixon, J.M., Tuszyński J.A., Marsh, R.E.: Application of a random network with a variable geometry of links to the kinetics of drug elimination in healthy and diseased livers. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 73, 051912 (2006)

    Google Scholar 

  11. Corana, A., Marchesi, M., Martini, C., Ridella, S.: Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm. ACM Trans. Math. Softw. 13, 262–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cornell, S., Droz, M., Chopard, B.: Role of fluctuations for inhomogeneous reaction-diffusion phenomena. Phys. Rev. A 44, 4826–4832 (1991)

    Article  Google Scholar 

  13. Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics, Rev edn. Portland Press, London (1995)

    Google Scholar 

  14. Damascelli, B., Cantù, G., Mattavelli, F., Tamplenizza, P., Bidoli, P., Leo, E., Dosio, F., Cerrotta, A.M., Di Tolla, G., Frigerio, L.F., Garbagnati, F., Lanocita, R., Marchianò, A., Patelli, G., Spreafico, C., Tichà, V., Vespro, V., Zunino, F.: Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): Phase II study of patients with squamous cell carcinoma of the head and neck and anal canal: Preliminary evidence of clinical activity. Cancer 92, 2592–2602 (2001)

    Article  Google Scholar 

  15. Eftaxias, A., Font, J., Fortuny, A., Fabregat, A., Stüber, F.: Nonlinear kinetic parameter estimation using simulated annealing. Comput. Chem. Eng. 26, 1725–1733 (2002)

    Article  Google Scholar 

  16. Fuite, J., Marsh, R., Tuszyński, J.A.: Fractal pharmacokinetics of the drug mibefradil in the liver. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 66, 021904 (2002)

    Google Scholar 

  17. Gabrielsson, J., Weiner, D.: Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications, 2nd edn. Swedish Pharmaceutical Press, Stockholm (1997)

    Google Scholar 

  18. Gaudio, E., Chaberek, S., Montella, A., Pannarale, L., Morini, S., Novelli, G., Borghese, F., Conte, D., Ostrowski, K.: Fractal and Fourier analysis of the hepatic sinusoidal network in normal and cirrhotic rat liver. J. Anat. 207, 107–115 (2005)

    Article  Google Scholar 

  19. Gibaldi, M., Perrier, D.: Pharmacokinetics, 2nd edn. Marcel Dekker, New York (1982)

    Google Scholar 

  20. Gisiger, T.: Scale invariance in biology: Coincidence or footprint of a universal mechanism? Biol. Rev. Camb. Philos. Soc. 76, 161–209 (2001)

    Article  Google Scholar 

  21. Glenny, R.W., Robertson, H.T.: Fractal properties of pulmonary blood flow: Characterization of spatial heterogeneity. J. Appl. Physiol. 69, 532–545 (1990)

    Google Scholar 

  22. Glenny, R.W., Robertson, H.T.: Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70, 1024–1030 (1991)

    Google Scholar 

  23. Goffe, W.L., Ferrier, G.D., Rogers, J.: Global optimization of statistical functions with simulated annealing. J. Econometrics 60, 65–99 (1994)

    Article  MATH  Google Scholar 

  24. Gough, K., Hutchinson, M., Keene, O., Byrom, B., Ellis, S., Lacey, L., McKellar, J.: Assessment of dose proportionality: Report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party. Drug Inform. J. 29, 1039–1048 (1995)

    Article  Google Scholar 

  25. Havlin, S., Ben-Avraham, D.: Diffusion in disordered media. Adv. Phy. 36, 695–798 (1987)

    Article  Google Scholar 

  26. Heidel, J., Maloney, J.: An analysis of a fractal Michaelis–Menten curve. J. Aust. Math. Soc. Ser. B 41, 410–422 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huizing, M.T., Misser, V.H., Pieters, R.C., ten Bokkel Huinink, W.W., Veenhof, C.H., Vermorken, J.B., Pinedo, H.M., Beijnen, J.H.: Taxanes: A new class of antitumor agents. Canc. Invest 13, 381–404 (1995)

    Article  Google Scholar 

  28. Jacquez, J.: Compartmental Analysis in Biology and Medicine, 3rd edn. BioMedware, Ann Arbor MI (1996)

    Google Scholar 

  29. Javanaud, C.: The application of a fractal model to the scattering of ultrasound in biological media. J. Acoust. Soc. Am. 86, 493–496 (1989)

    Article  Google Scholar 

  30. Kearns, C.M., Gianni, L., Egorin, M.J.: Paclitaxel pharmacokinetics and pharmacodynamics. Semin. Oncol. 22, 16–23 (1995)

    Google Scholar 

  31. Kirkpatrick, S., Gelatt, C.D. Jr, Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klymko, P.W., Kopelman, R.: Heterogeneous exciton kinetics: Triplet naphthalene homofusion in an isotopic mixed crystal. J. Phys. Chem. 86, 3686–3688 (1982)

    Article  Google Scholar 

  33. Kopelman, R.: Rate processes on fractals: Theory, simulations, and experiments. J. Stat. Phys. 42, 185–200 (1986)

    Article  Google Scholar 

  34. Kopelman, R.: Fractal reaction kinetics. Science 241, 1620–1626 (1988)

    Article  Google Scholar 

  35. Kosmidis, K., Karalis, V., Argyrakis, P., Macheras, P.: Michaelis–Menten kinetics under spatially constrained conditions: Application to mibefradil pharmacokinetics. Biophys. J. 87, 1498–1506 (2004)

    Article  Google Scholar 

  36. Kuh, H.J., Jang, S.H., Wientjes, M.G., Au, J.L.: Computational model of intracellular pharmacokinetics of paclitaxel. J. Pharmacol. Exp. Ther. 293, 761–770 (2000)

    Google Scholar 

  37. Landaw, E.M., Katz, D.: Comments on mean residence time determination. J. Pharmacokinet. Biopharm. 13, 543–547 (1985)

    Google Scholar 

  38. Levy, R.H.: Time-dependent pharmacokinetics. Pharmacol. Ther. 17, 383–397 (1982)

    Google Scholar 

  39. Levy, R.H., Bauer, L.A.: Basic pharmacokinetics. Ther. Drug Monit. 8, 47–58 (1986)

    Article  Google Scholar 

  40. Lin, J.H.: Dose-dependent pharmacokinetics: Experimental observations and theoretical considerations. Biopharm. Drug Dispos. 15, 1–31 (1994)

    Article  Google Scholar 

  41. López-Quintela, M.A., Casado, J.: Revision of the methodology in enzyme kinetics: A fractal approach. J. Theor. Biol. 139, 129–139 (1989)

    Article  Google Scholar 

  42. Macheras, P.: A fractal approach to heterogeneous drug distribution: Calcium pharmacokinetics. Pharm. Res. 13, 663–670 (1996)

    Article  Google Scholar 

  43. Mandelbrot, B.B.: Fractals: Form, Chance, and Dimension. W.H. Freeman, San Francisco (1977)

    MATH  Google Scholar 

  44. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  45. Marsh, R.E., Tuszyński, J.A.: Fractal Michaelis–Menten kinetics under steady state conditions, application to mibefradil. Pharmaceut. Res. 23, 2760–2767 (2006)

    Article  Google Scholar 

  46. Marsh, R.E., Tuszyński, J.A., Sawyer, M.B., Vos, K.J.E.: Emergence of power laws in the pharmacokinetics of paclitaxel due to competing saturable processes. J. Pharm. Pharm. Sci. 11, 77–96 (2008)

    Google Scholar 

  47. Marsh, R.E., Tuszyński, J.A., Sawyer, M., Vos, K.J.E.: A model of competing saturable kinetic processes with application to the pharmacokinetics of the anticancer drug paclitaxel. Math. Biosci. Eng. 8, 325–354 (2011)

    Article  MathSciNet  Google Scholar 

  48. Marshall, J.H.: Calcium pools and the power function. In: Bergner, P.E., Lushbaugh, C.C. (eds.) Compartments, Pools, and Spaces in Medical Physiology. USAEC Division of Technical Information, Oak Ridge TN (1967)

    Google Scholar 

  49. McLeod, H.L., Kearns, C.M., Kuhn, J.G., Bruno, R.: Evaluation of the linearity of docetaxel pharmacokinetics. Canc. Chemother. Pharmacol. 42, 155–159 (1998)

    Article  Google Scholar 

  50. Newhouse, J.S., Kopelman, R.: Reaction kinetics on clusters and islands. J. Chem. Phys. 85, 6804–6806 (1986)

    Article  Google Scholar 

  51. Norris, W.P., Tyler, S.A., Brues, A.M.: Retention of radioactive bone-seekers. Science 128, 456–462 (1958)

    Article  Google Scholar 

  52. Norwich, K.H., Siu, S.: Power functions in physiology and pharmacology. J. Theor. Biol. 95, 387–398 (1982)

    Article  MathSciNet  Google Scholar 

  53. Ogihara, T., Tamai, I., Tsuji, A.: Application of fractal kinetics for carrier-mediated transport of drugs across intestinal epithelial membrane. Pharm. Res. 15, 620–625 (1998)

    Article  Google Scholar 

  54. Pazdur, R., Kudelka, A.P., Kavanagh, J.J., Cohen, P.R., Raber, M.N.: The taxoids: Paclitaxel (Taxol) and docetaxel (Taxotere). Canc. Treat. Rev. 19, 351–386 (1993)

    Article  Google Scholar 

  55. Riccardi, A., Servidei, T., Tornesello, A., Puggioni, P., Mastrangelo, S., Rumi, C., Riccardi, R.: Cytotoxicity of paclitaxel and docetaxel in human neuroblastoma cell lines. Eur. J. Canc. 31A, 494–499 (1995)

    Article  Google Scholar 

  56. Ridgway, D., Tuszyński, J.A., Tam, Y.K.: Reassessing Models of Hepatic Extraction. J. Biol. Phys. 29, 1–21 (2003)

    Article  Google Scholar 

  57. Savageau, M.A.: Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. BioSystems 47, 9–36 (1998)

    Article  Google Scholar 

  58. Skerjanec, A., Tawfik, S., Tam, Y.K.: Mechanisms of nonlinear pharmacokinetics of mibefradil in chronically instrumented dogs. J. Pharmacol. Exp. Ther. 278, 817–825 (1996)

    Google Scholar 

  59. Sparreboom, A., van Tellingen, O., Nooijen, W.J., Beijnen, J.H.: Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Canc. Res. 56, 2112–2115 (1996)

    Google Scholar 

  60. Vaishampayan, U., Parchment, R.E., Jasti, B.R., Hussain, M.: Taxanes: An overview of the pharmacokinetics and pharmacodynamics. Urology 54, 22–29 (1999)

    Article  Google Scholar 

  61. Weiss, M.: Use of gamma distributed residence times in pharmacokinetics. Eur. J. Clin. Pharmacol. 25, 695–702 (1983)

    Article  Google Scholar 

  62. Weiss, M.: Importance of tissue distribution in determining drug disposition curves. J. Theor. Biol. 103, 649–52 (1983)

    Article  Google Scholar 

  63. Weiss, M.: A note on the interpretation of tracer dispersion in the liver. J. Theor. Biol. 184, 1–6 (1997)

    Article  Google Scholar 

  64. Wise, M.E.: The evidence against compartments. Biometrics 27, 262 (1971)

    Google Scholar 

  65. Wise, M.E.: Interpreting both short- and long-term power laws in physiological clearance curves. Math. Biosci. 20, 327–337 (1974)

    Article  MATH  Google Scholar 

  66. Wise, M.E.: Negative power functions of time in pharmacokinetics and their implications. J. Pharmacokinet. Biopharm. 13, 309–346 (1985)

    Google Scholar 

  67. Wise, M.E., Osborn, S.B., Anderson, J., Tomlinson, R.W.S.: A stochastic model for turnover of radiocalcium based on the observed power laws. Math. Biosci. 2, 199–224 (1968)

    Article  Google Scholar 

  68. van Zuylen, L., Gianni, L., Verweij, J., Mross, K., Brouwer, E., Loos, W.J., Sparreboom, A.: Inter-relationships of paclitaxel disposition, infusion duration and cremophor EL kinetics in cancer patients. Anticancer Drugs 11, 331–337 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Tuszyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marsh, R.E., Tuszyński, J.A. (2013). Saturable Fractal Pharmacokinetics and Its Applications. In: Ledzewicz, U., Schättler, H., Friedman, A., Kashdan, E. (eds) Mathematical Methods and Models in Biomedicine. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4178-6_12

Download citation

Publish with us

Policies and ethics