Skip to main content

Etiology and Epidemiology of CLL

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Chronic lymphocytic leukemia (CLL) is an indolent disease resulting from an accumulation of CD5-positive neoplastic B-cells characterized by a low rate of proliferation. Despite CLL accounting for approximately 25 % of all leukemia and being the most common form of lymphoid malignancy in Western countries [1], our understanding of its biological basis is only starting to be unraveled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ries LA, Wingo PA, Miller DS, et al. The annual report to the nation on the status of cancer, 1973–1997, with a special section on colorectal cancer. Cancer. 2000;88:2398–424.

    Article  PubMed  CAS  Google Scholar 

  2. SEER Cancer Statistics Review, 1975–2006. 2009. (Accessed 2010, 2009, at http://seer.cancer.gov/csr/1975_2006/).

  3. Gale RP, Cozen W, Goodman MT, Wang FF, Bernstein L. Decreased chronic lymphocytic leukemia incidence in Asians in Los Angeles County. Leuk Res. 2000;24:665–9.

    Article  PubMed  CAS  Google Scholar 

  4. Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968;40:43–68.

    PubMed  CAS  Google Scholar 

  5. Vigliani EC. Leukemia associated with benzene exposure. Ann N Y Acad Sci. 1976;271:143–51.

    Article  PubMed  CAS  Google Scholar 

  6. Brown LM, Gibson R, Blair A, et al. Smoking and risk of leukemia. Am J Epidemiol. 1992;135:763–8.

    PubMed  CAS  Google Scholar 

  7. Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137:S68–97.

    Article  PubMed  CAS  Google Scholar 

  8. Blair A, White DW. Leukemia cell types and agricultural practices in Nebraska. Arch Environ Health. 1985;40:211–4.

    PubMed  CAS  Google Scholar 

  9. Amadori D, Nanni O, Falcini F, et al. Chronic lymphocytic leukaemias and non-Hodgkin’s lymphomas by histological type in farming-animal breeding workers: a population case-control study based on job titles. Occup Environ Med. 1995;52:374–9.

    Article  PubMed  CAS  Google Scholar 

  10. Delzell E, Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthews R. An updated study of mortality among North American synthetic rubber industry workers. Res Rep Health Eff Inst. 2006;132:1–63. discussion 5–74.

    PubMed  Google Scholar 

  11. Huebner WW, Chen VW, Friedlander BR, et al. Incidence of lymphohaematopoietic malignancies in a petrochemical industry cohort: 1983–94 follow up. Occup Environ Med. 2000;57:605–14.

    Article  PubMed  CAS  Google Scholar 

  12. Raabe GK, Wong O. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene. Environ Health Perspect. 1996;104 Suppl 6:1381–92.

    Article  PubMed  Google Scholar 

  13. Gilman PA, Ames RG, McCawley MA. Leukemia risk among U.S. white male coal miners. A case-control study. J Occup Med. 1985;27:669–71.

    PubMed  CAS  Google Scholar 

  14. Schwartz DA, Vaughan TL, Heyer NJ, et al. B cell neoplasms and occupational asbestos exposure. Am J Ind Med. 1988;14:661–71.

    Article  PubMed  CAS  Google Scholar 

  15. Blair A, Purdue MP, Weisenburger DD, Baris D. Chemical exposures and risk of chronic lymphocytic leukaemia. Br J Haematol. 2007;139:753–61.

    Article  PubMed  CAS  Google Scholar 

  16. Richardson DB, Wing S, Schroeder J, Schmitz-Feuerhake I, Hoffmann W. Ionizing radiation and chronic lymphocytic leukemia. Environ Health Perspect. 2005;113:1–5.

    Article  PubMed  CAS  Google Scholar 

  17. Schubauer-Berigan MK, Daniels RD, Fleming DA, et al. Chronic lymphocytic leukaemia and radiation: findings among workers at five US nuclear facilities and a review of the recent literature. Br J Haematol. 2007;139:799–808.

    Article  PubMed  Google Scholar 

  18. Molica S. Infections in chronic lymphocytic leukemia: risk factors, and impact on survival, and treatment. Leuk Lymphoma. 1994;13:203–14.

    Article  PubMed  CAS  Google Scholar 

  19. Krackhardt AM, Harig S, Witzens M, Broderick R, Barrett P, Gribben JG. T-cell responses against chronic lymphocytic leukemia cells: implications for immunotherapy. Blood. 2002;100:167–73.

    Article  PubMed  CAS  Google Scholar 

  20. Krackhardt AM, Witzens M, Harig S, et al. Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood. 2002;100:2123–31.

    Article  PubMed  CAS  Google Scholar 

  21. Analo HI, Akanmu AS, Akinsete I, Njoku OS, Okany CC. Seroprevalence study of HTLV-1 and HIV infection in blood donors and patients with lymphoid malignancies in Lagos, Nigeria. Cent Afr J Med. 1998;44:130–4.

    PubMed  CAS  Google Scholar 

  22. Cartwright RA, Bernard SM, Bird CC, et al. Chronic lymphocytic leukaemia: case control epidemiological study in Yorkshire. Br J Cancer. 1987;56:79–82.

    Article  PubMed  CAS  Google Scholar 

  23. Jonsson V, Houlston RS, Catovsky D, et al. CLL family ‘Pedigree 14’ revisited: 1947–2004. Leukemia. 2005;19:1025–8.

    Article  PubMed  CAS  Google Scholar 

  24. Linet MS, Van Natta ML, Brookmeyer R, et al. Familial cancer history and chronic lymphocytic leukemia. A case-control study. Am J Epidemiol. 1989;130:655–64.

    PubMed  CAS  Google Scholar 

  25. Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104:1850–4.

    Article  PubMed  CAS  Google Scholar 

  26. Gunz FW, Gunz JP, Veale AM, Chapman CJ, Houston IB. Familial leukaemia: a study of 909 families. Scand J Haematol. 1975;15:117–31.

    Article  PubMed  CAS  Google Scholar 

  27. Giles GG, Lickiss JN, Baikie MJ, Lowenthal RM, Panton J. Myeloproliferative and lymphoproliferative disorders in Tasmania, 1972–80: occupational and familial aspects. J Natl Cancer Inst. 1984;72:1233–40.

    PubMed  CAS  Google Scholar 

  28. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86:1600–8.

    Article  PubMed  CAS  Google Scholar 

  29. Pottern LM, Linet M, Blair A, et al. Familial cancers associated with subtypes of leukemia and non-Hodgkin’s lymphoma. Leuk Res. 1991;15:305–14.

    Article  PubMed  CAS  Google Scholar 

  30. Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica. 2009;94:647–53.

    Article  PubMed  Google Scholar 

  31. Ishibe N, Sgambati MT, Fontaine L, et al. Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma. 2001;42:99–108.

    Article  PubMed  CAS  Google Scholar 

  32. Crowther-Swanepoel D, Wild R, Sellick G, et al. Insight into the pathogenesis of chronic lymphocytic leukemia (CLL) through analysis of IgVH gene usage and mutation status in familial CLL. Blood. 2008;111:5691–3.

    Article  PubMed  CAS  Google Scholar 

  33. Wiernik PH, Ashwin M, Hu XP, Paietta E, Brown K. Anticipation in familial chronic lymphocytic leukaemia. Br J Haematol. 2001;113:407–14.

    Article  PubMed  CAS  Google Scholar 

  34. Horwitz M, Goode EL, Jarvik GP. Anticipation in familial leukemia. Am J Hum Genet. 1996;59:990–8.

    PubMed  CAS  Google Scholar 

  35. Yuille MR, Houlston RS, Catovsky D. Anticipation in familial chronic lymphocytic leukaemia. Leukemia. 1998;12:1696–8.

    Article  PubMed  CAS  Google Scholar 

  36. Daugherty SE, Pfeiffer RM, Mellemkjaer L, Hemminki K, Goldin LR. No evidence for anticipation in lymphoproliferative tumors in population-based samples. Cancer Epidemiol Biomarkers Prev. 2005;14:1245–50.

    Article  PubMed  Google Scholar 

  37. Sellick GS, Goldin LR, Wild RW, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood. 2007;110:3326–33.

    Article  PubMed  CAS  Google Scholar 

  38. Fuller SJ, Papaemmanuil E, McKinnon L, et al. Analysis of a large multi-generational family provides insight into the genetics of chronic lymphocytic leukemia. Br J Haematol. 2008;142(2):238–45.

    Article  PubMed  Google Scholar 

  39. Goldin LR, Ishibe N, Sgambati M, et al. A genome scan of 18 families with chronic lymphocytic leukaemia. Br J Haematol. 2003;121:866–73.

    Article  PubMed  Google Scholar 

  40. Sellick GS, Webb EL, Allinson R, et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-susceptibility loci. Am J Hum Genet. 2005;77:420–9.

    Article  PubMed  CAS  Google Scholar 

  41. Raval A, Tanner SM, Byrd JC, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129:879–90.

    Article  PubMed  CAS  Google Scholar 

  42. Jonsson V, Tjonnfjord GE, Johannesen TB, Ly B, Olsen JH, Yuille M. Familial chronic lymphocytic leukemia in Norway and Denmark. Comments on pleiotropy and birth order. In Vivo. 2010;24:85–95.

    PubMed  Google Scholar 

  43. Di Bernardo MC, Crowther-Swanepoel D, Broderick P, et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2008;40:1204–10.

    Article  PubMed  Google Scholar 

  44. Crowther-Swanepoel D, Broderick P, Di Bernardo MC, et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet. 2010;42:132–6.

    Article  PubMed  CAS  Google Scholar 

  45. Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.

    Article  PubMed  CAS  Google Scholar 

  46. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5:230–42.

    Article  PubMed  CAS  Google Scholar 

  47. Klein U, Casola S, Cattoretti G, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.

    Article  PubMed  CAS  Google Scholar 

  48. Adami J, Frisch M, Yuen J, Glimelius B, Melbye M. Evidence of an association between non-Hodgkin’s lymphoma and skin cancer. Br Med J. 1995;310:1491–5.

    Article  CAS  Google Scholar 

  49. Swerdlow AJ, Storm HH, Sasieni PD. Risks of second primary malignancy in patients with cutaneous and ocular melanoma in Denmark, 1943–1989. Int J Cancer. 1995;61:773–9.

    Article  PubMed  CAS  Google Scholar 

  50. Han J, Kraft P, Nan H, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4:e1000074.

    Article  PubMed  Google Scholar 

  51. Pho LN, Leachman SA. Genetics of pigmentation and melanoma predisposition. G Ital Dermatol Venereol. 2010;145:37–45.

    PubMed  CAS  Google Scholar 

  52. Bloch DB, de la Monte SM, Guigaouri P, Filippov A, Bloch KD. Identification and characterization of a leukocyte-specific component of the nuclear body. J Biol Chem. 1996;271:29198–204.

    Article  PubMed  CAS  Google Scholar 

  53. Dent AL, Yewdell J, Puvion-Dutilleul F, Koken MH, de The H, Staudt LM. LYSP100-associated nuclear domains (LANDs): description of a new class of subnuclear structures and their relationship to PML nuclear bodies. Blood. 1996;88:1423–6.

    PubMed  CAS  Google Scholar 

  54. Ling PD, Peng RS, Nakajima A, et al. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J. 2005;24:3565–75.

    Article  PubMed  CAS  Google Scholar 

  55. Madani N, Millette R, Platt EJ, et al. Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1. J Virol. 2002;76:11133–8.

    Article  PubMed  CAS  Google Scholar 

  56. Kovalevska LM, Yurchenko OV, Shlapatska LM, et al. Immunohistochemical studies of protein kinase D (PKD) 2 expression in malignant human lymphomas. Exp Oncol. 2006;28:225–30.

    PubMed  CAS  Google Scholar 

  57. Miyamoto Y, Yamauchi J, Itoh H. Src kinase regulates the activation of a novel FGD-1-related Cdc42 guanine nucleotide exchange factor in the signaling pathway from the endothelin A receptor to JNK. J Biol Chem. 2003;278:29890–900.

    Article  PubMed  CAS  Google Scholar 

  58. Page-McCaw PS, Amonlirdviman K, Sharp PA. PUF60: a novel U2AF65-related splicing activity. RNA. 1999;5:1548–60.

    Article  PubMed  CAS  Google Scholar 

  59. Duncan R, Bazar L, Michelotti G, et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 1994;8:465–80.

    Article  PubMed  CAS  Google Scholar 

  60. Liu J, He L, Collins I, et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell. 2000;5:331–41.

    Article  PubMed  CAS  Google Scholar 

  61. Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39:631–7.

    Article  PubMed  CAS  Google Scholar 

  62. Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447:1087–93.

    Article  PubMed  CAS  Google Scholar 

  63. Tomlinson I, Webb E, Carvajal-Carmona L, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39:984–8.

    Article  PubMed  CAS  Google Scholar 

  64. Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9.

    Article  PubMed  CAS  Google Scholar 

  65. Amundadottir LT, Sulem P, Gudmundsson J, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38:652–8.

    Article  PubMed  CAS  Google Scholar 

  66. Kiemeney LA, Thorlacius S, Sulem P, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet. 2008;40:1307–12.

    Article  PubMed  CAS  Google Scholar 

  67. Pomerantz MM, Ahmadiyeh N, Jia L, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41:882–4.

    Article  PubMed  CAS  Google Scholar 

  68. Shaffer AL, Emre NC, Lamy L, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454:226–31.

    Article  PubMed  CAS  Google Scholar 

  69. Rawstron AC, Green MJ, Kuzmicki A, et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood. 2002;100:635–9.

    Article  PubMed  CAS  Google Scholar 

  70. Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    Article  PubMed  CAS  Google Scholar 

  71. Brezinschek HP, Brezinschek RI, Lipsky PE. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol. 1995;155:190–202.

    PubMed  CAS  Google Scholar 

  72. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    PubMed  CAS  Google Scholar 

  73. Mockridge CI, Rahman A, Buchan S, et al. Common patterns of B cell perturbation and expanded V4-34 immunoglobulin gene usage in autoimmunity and infection. Autoimmunity. 2004;37:9–15.

    Article  PubMed  Google Scholar 

  74. Kostareli E, Hadzidimitriou A, Stavroyianni N, et al. Molecular evidence for EBV and CMV persistence in a subset of patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Leukemia. 2009;23:919–24.

    Article  PubMed  CAS  Google Scholar 

  75. Xu D, Zhao L, Del Valle L, Miklossy J, Zhang L. Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes. J Virol. 2008;82:6251–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Houlston M.D., Ph.D., F.R.C.Path., F.R.C.Pi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crowther-Swanepoel, D., Catovsky, D., Houlston, R.S. (2013). Etiology and Epidemiology of CLL. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics