Skip to main content

Modelling Prone to Supine Breast Deformation Under Gravity Loading Using Heterogeneous Finite Element Models

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Biomechanical models of the breast can be used to co-locate information between the various medical images to identify tumour locations, while also providing the ability to predict their locations during surgical procedures. We have created subject-specific, heterogeneous 3D finite element (FE) models of breast biomechanics to provide the ability to predict breast deformation under different loading conditions. We have verified the applicability of such modelling for simulating the prone to supine reorientation of the breast and obtained good agreement to ground-truth supine images obtained from breast MRI. In particular, we highlight the importance of modelling the pectoral muscles for gravity loading simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Matlab Version 2010a, The MathWorks, Inc., USA: www.mathworks.com.

  2. 2.

    CMISS Version 2.1, Auckland Bioengineering Institute, New Zealand: www.cmiss.org.

References

  1. Carter, T., Tanner, C., Beechey-Newman, N., Barratt, D., Hawkes, D.: MR navigated breast surgery: method and initial clinical experience. Med. Image Comput. Comput. Assist. Interv. 11, 356–363 (2008)

    Google Scholar 

  2. del Palomar, A.P., Calvo, B., Herrero, J., Lopez, J., Doblar, M.: A finite element model to accurately predict real deformations of the breast. Med. Eng. Phys. 30(9), 1089–1097 (2008)

    Article  Google Scholar 

  3. Uren, R.F., Howman-Giles, R., Renwick, S.B., Gillett, D.: Lymphatic mapping of the breast: Locating the sentinel lymph nodes. World J. Surg. 25, 789–793 (2001)

    Article  Google Scholar 

  4. Blumgart, E.I., Uren, R.F., Nielsen, P.M.F., Nash, M.P., Reynolds, H.M.: Lymphatic drainage and tumour prevalence in the breast: a statistical analysis of symmetry, gender and node field independence. J. Anat. 218(6), 652–659 (2011)

    Article  Google Scholar 

  5. Rajagopal, V., Lee, A., Chung, J., Warren, R., Highnam, R., Nielsen, P.M.F., Nash, M.P.: Towards tracking breast cancer across medical images using subject specific biomechanical models. Med. Image Comput. Comput. Assist. Interv. 10, 651–658 (2007)

    Google Scholar 

  6. Bradley, C.P., Pullan, A.J., Hunter, P.J.: Geometric modeling of the human torso using cubic hermite elements. Ann. Biomed. Eng. 25(1), 96–111 (1997)

    Article  Google Scholar 

  7. Lohmann, G.: Volumetric Image Analysis. John Wiley & Sons, Chichester, England (1998)

    Google Scholar 

  8. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  9. Zienkiewicz, O., Taylor, R.: The Finite Element Method for Solid and Structural Mechanics, 6th edn. Elsevier Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford (2005)

    MATH  Google Scholar 

  10. Rajagopal, V., Nielsen, P.M.F., Nash, M.P.: Modeling breast biomechanics for multi-modal image analysis -successes and challenges. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(3), 293–304 (2009)

    Article  Google Scholar 

  11. Johns, P.C., Yaffe, M.J.: X-ray characterisation of normal and neoplastic breast tissue. Phys. Med. Biol. 32, 675–695 (1987)

    Article  Google Scholar 

  12. Urbancheka, M., et al.: Specific force deficit in skeletal muscles of old rats is partially explained by the existence of denervated muscle fibers. J. Gerontol. Biol. Med. Sci. 56(5), B191–B197 (2001)

    Article  Google Scholar 

  13. Rajagopal, V., Chung, J., Nielsen, P.M.F., Nash, M.P.: Determining the finite elasticity reference state from a loaded configuration. Int. J. Numer. Meth. Eng. 72, 1434–1451 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nielsen, P.M.F.: The anatomy of the heart: a finite element model. PhD thesis, University of Auckland (1987)

    Google Scholar 

  15. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  16. Gefen, A., Dilmoney, B.: Mechanics of the normal woman's breast. Technol. Health Care 15(4), 259–271 (2007)

    Google Scholar 

  17. Azar, F.S., Metaxas, D.N., Schnall, M.D.: A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad. Radiol. 8(10), 965–975 (2001)

    Article  Google Scholar 

  18. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46, 726–738 (2009)

    Article  Google Scholar 

  19. Lee, A.W.C., Schnabel, J.A., Rajagopal, V., Nielsen, P.M.F., Nash, M.P.: Breast image registration by combining finite elements and free-form deformations. Digital Mammography 6136, 736–743 (2010)

    Article  Google Scholar 

  20. Babarenda Gamage, T.P., Rajagopal, V., Ehrgott, M., Nash, M.P., Nielsen, P.M.F.: Identification of mechanical properties of heterogeneous soft bodies using gravity loading. Int. J. Numer. Meth. Eng. 27(3), 391–407 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The financial support provided by the New Zealand Government’s Ministry for Science and Innovation is gratefully acknowledged. We also thank Miss Angela Lee and Dr Jessica Jor for their valuable contributions to this study. Martyn P. Nash and Poul M. F. Nielsen are supported by James Cook Fellowships administered by the Royal Society of New Zealand on behalf of the New Zealand Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiranja P. Babarenda Gamage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gamage, T.P.B., Boyes, R., Rajagopal, V., Nielsen, P.M.F., Nash, M.P. (2012). Modelling Prone to Supine Breast Deformation Under Gravity Loading Using Heterogeneous Finite Element Models. In: Nielsen, P., Wittek, A., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3172-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3172-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3171-8

  • Online ISBN: 978-1-4614-3172-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics