Skip to main content

Still Looking for the Memories: Molecules and Synaptic Plasticity

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

Abstract

Computational neuroscientists have been playing around with plastic synapses for several decades. Interestingly, mechanistically detailed models of synaptic plasticity started around the same time as the CNS meetings. This was when the associative properties of the N-methyl-d-aspartate (NMDA) receptor were demonstrated, first setting out the molecular and mechanistic underpinnings of synaptic plasticity. Some 20 years ago there was little reason to expect that the underlying biology would turn out to be as outrageously complicated as we now find it. Associativity seemed to be established by the NMDA receptor especially through the work of Collingridge, and there were already a couple of candidate mechanisms for how to maintain synaptic weights: the CaMKII autocatalytic process found by several people and first modeled by Lisman, and the PKA story from Kandel. These leads led into a maze. Even 10 years ago, there were over a 100 known molecules implicated in synaptic plasticity. The first major molecular models of synaptic plasticity had some dozen signaling pathways—a far cry from what was known. The field as a whole is still playing catch-up. Nevertheless, most of the key properties of plasticity have had a good share of models, at various levels of detail. I suggest that there has been a recent shift in perspective, from enumerating molecules to looking at functional roles that may involve different, often overlapping sets of molecules. It is the identification and integration of these diverse functions of the synapse that is the key conceptual direction of the field. This has combined with technical and data-driven advances in managing and modeling multiscale phenomena spanning single-molecule reaction–diffusion, through chemistry, electrical and structural effects, and the network. As many of us felt, 20 years ago, we are again at a fascinating time where the experiments, the databases, and the computational tools are just coming together to address these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajay SM, Bhalla US (2004) A role for ERKII in synaptic pattern selectivity on the time-scale of minutes. Eur J Neurosci 20(10):2671–2680. doi:10.1111/j.1460-9568.2004.03725.x

    Article  PubMed  Google Scholar 

  • Ajay SM, Bhalla US (2007) A propagating ERKII switch forms zones of elevated dendritic activation correlated with plasticity. HFSP J 1(1):49–66. doi:10.2976/1.2721383

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461. doi:10.1038/nrg2102

    Article  PubMed  CAS  Google Scholar 

  • Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6(3):e1000705. doi:10.1371/journal.pcbi.1000705

    Article  PubMed  Google Scholar 

  • Anglister L, Stiles JR, Salpeter MM (1994) Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling of their role in synaptic function. Neuron 12(4):783–794

    Article  PubMed  CAS  Google Scholar 

  • Appleby PA, Elliott T (2005) Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural Comput 17(11):2316–2336. doi:10.1162/0899766054796879

    Article  PubMed  Google Scholar 

  • Aslam N, Kubota Y, Wells D, Shouval HZ (2009) Translational switch for long-term maintenance of synaptic plasticity. Mol Syst Biol 5:284. doi:10.1038/msb.2009.38

    Article  PubMed  Google Scholar 

  • Badoual M, Zou Q, Davison AP, Rudolph M, Bal T, FrĂ©gnac Y, Destexhe A (2006) Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. Int J Neural Syst 16(2):79–97

    Article  PubMed  Google Scholar 

  • Barkai E, Hasselmo ME (1994) Modulation of the input/output function of rat piriform cortex pyramidal cells. J Neurophysiol 72(2):644–658

    PubMed  CAS  Google Scholar 

  • Bennett MR, Gibson WG, Robinson J (1995) Probabilistic secretion of quanta: spontaneous release at active zones of varicosities, boutons, and endplates. Biophys J 69(1):42–56. doi:10.1016/S0006-3495(95)79873-3

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US (2002a) Biochemical signaling networks decode temporal patterns of synaptic input. J Comput Neurosci 13(1):49–62

    Article  PubMed  Google Scholar 

  • Bhalla US (2002b) Mechanisms for temporal tuning and filtering by postsynaptic signaling pathways. Biophys J 83(2):740–752. doi:10.1016/S0006-3495(02)75205-3

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US (2003) Understanding complex signaling networks through models and metaphors. Prog Biophys Mol Biol 81(1):45–65

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US (2004) Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys J 87(2):745–753. doi:10.1529/biophysj.104.040501

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387

    Article  PubMed  CAS  Google Scholar 

  • Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297(5583):1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    PubMed  CAS  Google Scholar 

  • Bialek W (2001) Stability and noise in biochemical switches. Adv Neural Inf Process Syst 13:103–109

    Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    Article  PubMed  CAS  Google Scholar 

  • Byrne MJ, Putkey JA, Waxham MN, Kubota Y (2009) Dissecting cooperative calmodulin binding to CaM kinase II: a detailed stochastic model. J Comput Neurosci 27(3):621–638. doi:10.1007/s10827-009-0173-3

    Article  PubMed  Google Scholar 

  • Clopath C, Ziegler L, Vasilaki E, BĂĽsing L, Gerstner W (2008) Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS Comput Biol 4(12):e1000248. doi:10.1371/journal.pcbi.1000248

    Article  PubMed  Google Scholar 

  • Coggan JS, Bartol TM, Esquenazi E, Stiles JR, Lamont S, Martone ME, Berg DK et al (2005) Evidence for ectopic neurotransmission at a neuronal synapse. Science 309(5733):446–451. doi:10.1126/science.1108239

    Article  PubMed  CAS  Google Scholar 

  • Crook SM, Dur-E-Ahmad M, Baer SM (2007a) A model of activity-dependent changes in dendritic spine density and spine structure. Math Biosci Eng 4(4):617–631

    Article  PubMed  CAS  Google Scholar 

  • Crook S, Gleeson P, Howell F, Svitak J, Silver RA (2007b) MorphML: level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics 5(2):96–104

    Article  PubMed  Google Scholar 

  • D’Alcantara P, Schiffmann SN, Swillens S (2003) Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways. Eur J Neurosci 17(12):2521–2528

    Article  PubMed  Google Scholar 

  • Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89(10):4363–4367

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6(3):231–242. doi:10.1038/nn1013

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JE, Xiong W (2001) Bistability in cell signaling: how to make continuous processes discontinuous, and reversible processes irreversible. Chaos 11(1):227–236

    Article  PubMed  CAS  Google Scholar 

  • Froemke RC, Poo M, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434(7030):221–225

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361. doi:10.1021/j100540a008

    Article  CAS  Google Scholar 

  • Gold JI, Bear MF (1994) A model of dendritic spine Ca2+ concentration exploring possible bases for a sliding synaptic modification threshold. Proc Natl Acad Sci USA 91(9):3941–3945

    Article  PubMed  CAS  Google Scholar 

  • Graupner M, Brunel N (2007) STDP in a bistable synapse model based on CaMKII and associated signaling pathways. PLoS Comput Biol 3(11):e221. doi:10.1371/journal.pcbi.0030221

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Anderson BP, Bower JM (1992) Cholinergic modulation of cortical associative memory function. J Neurophysiol 67(5):1230–1246

    PubMed  CAS  Google Scholar 

  • Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from receptor and kinase traffic. PLoS Comput Biol 1(2):137–154

    Article  PubMed  CAS  Google Scholar 

  • Hebb D (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79(8):2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102. doi:10.1146/annurev.ne.12.030189.000505

    Article  PubMed  CAS  Google Scholar 

  • Jaeger D, De Schutter E, Bower JM (1997) The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. J Neurosci 17(1):91–106

    PubMed  CAS  Google Scholar 

  • Jain P, Bhalla US (2009) Signaling logic of activity-triggered dendritic protein synthesis: an mTOR gate but not a feedback switch. PLoS Comput Biol 5(2):e1000287. doi:10.1371/journal.pcbi.1000287

    Article  PubMed  Google Scholar 

  • Kim M, Huang T, Abel T, Blackwell KT (2010) Temporal sensitivity of protein kinase a activation in late-phase long term potentiation. PLoS Comput Biol 6(2):e1000691. doi:10.1371/journal.pcbi.1000691

    Article  PubMed  Google Scholar 

  • Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21(15):5693–5702

    PubMed  CAS  Google Scholar 

  • Lee CJ, Anton M, Poon C, McRae GJ (2009) A kinetic model unifying presynaptic short-term facilitation and depression. J Comput Neurosci 26(3):459–473. doi:10.1007/s10827-008-0122-6

    Article  PubMed  Google Scholar 

  • Lindskog M, Kim M, Wikström MA, Blackwell KT, Kotaleski JH (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2(9):e119. doi:10.1371/journal.pcbi.0020119

    Article  PubMed  Google Scholar 

  • Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86(23):9574–9578

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Zhabotinsky AM (2001) A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31(2):191–201

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Golowasch J, Marder E, Abbott LF (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J Neurosci 18(7):2309–2320

    PubMed  CAS  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213

    Article  PubMed  CAS  Google Scholar 

  • Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245(4920):862–866

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Goaillard J (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7(7):563–574. doi:10.1038/nrn1949

    Article  PubMed  CAS  Google Scholar 

  • Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164(3):353–359

    Article  PubMed  CAS  Google Scholar 

  • Markram H, LĂĽbke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  PubMed  CAS  Google Scholar 

  • Miller P, Zhabotinsky AM, Lisman JE, Wang X (2005) The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol 3(4):e107

    Article  PubMed  Google Scholar 

  • Minsky M, Papert S (1969) Perceptrons: an introduction to computational geometry. MIT Press, Cambridge, MA

    Google Scholar 

  • Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9(5):967–975

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Doi T, Yoshimoto J, Doya K (2010) A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6(2):e1000670. doi:10.1371/journal.pcbi.1000670

    Article  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, Kim M, Zaccolo M et al (2010) The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One 5(7):e11725. doi:10.1371/journal.pone.0011725

    Article  PubMed  Google Scholar 

  • Olypher AV, Prinz AA (2010) Geometry and dynamics of activity-dependent homeostatic regulation in neurons. J Comput Neurosci 28(3):361–374. doi:10.1007/s10827-010-0213-z

    Article  PubMed  Google Scholar 

  • Pepke S, Kinzer-Ursem T, Mihalas S, Kennedy MB (2010) A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. PLoS Comput Biol 6(2):e1000675. doi:10.1371/journal.pcbi.1000675

    Article  PubMed  Google Scholar 

  • Pfister J, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26(38):9673–9682

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan N, Bhalla US (2008) Memory switches in chemical reaction space. PLoS Comput Biol 4(7):e1000122. doi:10.1371/journal.pcbi.1000122

    Article  PubMed  Google Scholar 

  • Rosenblatt F (1962) Principles of perceptrons. Spartan, Washington, DC

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Can molecules explain long-term potentiation? Nat Neurosci 2(7):597–604. doi:10.1038/10154

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52(4):635–648. doi:10.1016/j.neuron.2006.10.025

    Article  PubMed  CAS  Google Scholar 

  • Sanyal S, Sandstrom DJ, Hoeffer CA, Ramaswami M (2002) AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature 416(6883):870–874. doi:10.1038/416870a

    Article  PubMed  CAS  Google Scholar 

  • Shema R, Sacktor TC, Dudai Y (2007) Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science 317(5840):951–953. doi:10.1126/science.1144334

    Article  PubMed  CAS  Google Scholar 

  • Shouval HZ (2005) Clusters of interacting receptors can stabilize synaptic efficacies. Proc Natl Acad Sci USA 102(40):14440–14445. doi:10.1073/pnas.0506934102

    Article  PubMed  CAS  Google Scholar 

  • Smolen P, Baxter DA, Byrne JH (2008) Bistable MAP kinase activity: a plausible mechanism contributing to maintenance of late long-term potentiation. Am J Physiol Cell Physiol 294(2):C503–C515. doi:10.1152/ajpcell.00447.2007

    Article  PubMed  CAS  Google Scholar 

  • Smolen P, Baxter DA, Byrne JH (2009) Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Phys Rev E Stat Nonlin Soft Matter Phys 79(3 Pt 1):031902

    Article  PubMed  Google Scholar 

  • Song H, Smolen P, Av-Ron E, Baxter DA, Byrne JH (2006) Bifurcation and singularity analysis of a molecular network for the induction of long-term memory. Biophys J 90(7):2309–2325. doi:10.1529/biophysj.105.074500

    Article  PubMed  CAS  Google Scholar 

  • Stanton PK, Sejnowski TJ (1989) Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339(6221):215–218. doi:10.1038/339215a0

    Article  PubMed  CAS  Google Scholar 

  • Steuber V, Willshaw D (2004) A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. J Comput Neurosci 17(2):149–164. doi:10.1023/B:JCNS.0000037678.26155.b5

    Article  PubMed  Google Scholar 

  • Tanaka K, Augustine GJ (2008) A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron 59(4):608–620. doi:10.1016/j.neuron.2008.06.026

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG (1999) Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci 22(5):221–227

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435. doi:10.1016/j.cell.2008.10.008

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Article  PubMed  CAS  Google Scholar 

  • Wils S, De Schutter E (2009) STEPS: modeling and simulating complex reaction-diffusion systems with python. Front Neuroinform 3:15. doi:10.3389/neuro.11.015.2009

    Article  PubMed  Google Scholar 

  • Zador A, Koch C, Brown TH (1990) Biophysical model of a Hebbian synapse. Proc Natl Acad Sci USA 87(17):6718–6722

    Article  PubMed  CAS  Google Scholar 

  • Zou Q, Destexhe A (2007) Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations. Biol Cybern 97(1):81–97

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upinder S. Bhalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhalla, U.S. (2013). Still Looking for the Memories: Molecules and Synaptic Plasticity. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_9

Download citation

Publish with us

Policies and ethics