Skip to main content

20 Years of “Noise”: Contributions of Computational Neuroscience to the Exploration of the Effect of Background Activity on Central Neurons

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

  • 2369 Accesses

Abstract

The central nervous system is subject to many different forms of noise, which have fascinated researchers since the beginning of electrophysiological recordings. In cerebral cortex, the largest amplitude noise source is the “synaptic noise,” which is dominant in intracellular recordings in vivo. The consequences of this background activity are a classic theme of modeling studies. In the last 20 years, this field tremendously progressed as the synaptic noise was measured for the first time using quantitative methods. These measurements have allowed computational models not only to be more realistic and closer to the biological data but also to investigate the consequences of synaptic noise in more quantitative terms, measurable in experiments. As a consequence, the “high-conductance state” conferred by this intense activity in vivo could also be replicated in neurons maintained in vitro using dynamic-clamp techniques. In addition, mathematical approaches of stochastic systems provided new methods to analyze synaptic noise and obtain critical information such as the optimal conductance patterns leading to spike discharges. It is only through such a combination of different disciplines, such as experiments, computational models, and theory, that we will be able to understand how noise participates to neural computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrett JN (1975) Motoneuron dendrites: role in synaptic integration. Fed Proc 34:1398–1407

    PubMed  CAS  Google Scholar 

  • Barrett JN, Crill WE (1974) Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones. J Physiol 293:325–345

    Google Scholar 

  • Bernander O, Douglas RJ, Martin KA, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88:11569–11573

    Article  PubMed  CAS  Google Scholar 

  • Borg-Graham LJ, Monier C, Frégnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–373

    Article  PubMed  CAS  Google Scholar 

  • Bryant HL, Segundo JP (1976) Spike initiation by transmembrane current: a white-noise analysis. J Physiol 260:279–314

    PubMed  CAS  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773–782

    Article  PubMed  CAS  Google Scholar 

  • Contreras D, Timofeev I, Steriade M (1996) Mechanisms of long lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol 494:251–264

    PubMed  CAS  Google Scholar 

  • De Schutter E, Bower JM (1994) Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci USA 91:4736–4740

    Article  PubMed  Google Scholar 

  • Destexhe A (2007) High-conductance state. Scholarpedia 2:1341. http://www.scholarpedia.org/article/High-Conductance State

  • Destexhe A, Bal T (eds) (2009) The dynamic-clamp: from principles to applications. Springer, New York

    Google Scholar 

  • Destexhe A, Paré D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531–1547

    PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M (2004) Extracting information from the power spectrum of synaptic noise. J Comput Neurosci 17:327–345

    Article  PubMed  Google Scholar 

  • Destexhe A, Rudolph M (2012) Neuronal noise. Springer, New York

    Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M, Fellous J-M, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13–24

    Article  PubMed  CAS  Google Scholar 

  • Destexhe A, Mand R, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739–751

    Article  PubMed  CAS  Google Scholar 

  • El Boustani S, Pospischil M, Rudolph-Lilith Mand Destexhe A (2007) Activated cortical states: experiments, analyses and models. J Physiol Paris 101:99–109

    Article  PubMed  Google Scholar 

  • Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811–829

    Article  PubMed  CAS  Google Scholar 

  • Gammaitoni L, Hanggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223–287

    Article  CAS  Google Scholar 

  • Greenhill SD, Jones RS (2007) Simultaneous estimation of global background synaptic inhibition and excitation from membrane potential fluctuations in layer III neurons of the rat entorhinal cortex in vitro. Neuroscience 147:884–892

    Article  PubMed  CAS  Google Scholar 

  • Haider B, McCormick DA (2009) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62:171–189

    Article  PubMed  CAS  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545

    Article  PubMed  CAS  Google Scholar 

  • Higgs MH, Slee SJ, Spain WJ (2006) Diversity of gain modulation by noise in neocortical neurons: regulation by the slow after-hyperpolarization conductance. J Neurosci 26:8787–8799

    Article  PubMed  CAS  Google Scholar 

  • Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic integration in striate cortical simple cells. J Neurosci 18:9517–9528

    PubMed  CAS  Google Scholar 

  • Hô N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J Neurophysiol 84:1488–1496

    PubMed  Google Scholar 

  • Ho EC, Zhang L, Skinner FK (2009) Inhibition dominates in shaping spontaneous CA3 hippocampal network activities in vitro. Hippocampus 19:152–165

    Article  PubMed  Google Scholar 

  • Holmes WR, Woody CD (1989) Effects of uniform and non-uniform synaptic “activation-distributions” on the cable properties of modeled cortical pyramidal neurons. Brain Res 505:12–22

    Article  PubMed  CAS  Google Scholar 

  • Lindner B, Longtin A (2006) Comment on “Characterization of subthreshold voltage fluctuations in neuronal membranes”, by M. Rudolph and A. Destexhe. Neural Comput 18:1896–1931

    Article  PubMed  Google Scholar 

  • Llinas RR, Jahnsen H (1982) Electrophysiology of thalamic neurones in vitro. Nature 297:406–408

    Article  PubMed  CAS  Google Scholar 

  • Mitchell SJ, Silver RA (2003) Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 38:433–445

    Article  PubMed  CAS  Google Scholar 

  • Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y (2003) Orientation and direction selectivity of synaptic inputs in visual cortical neurons: a diversity of combinations produces spike tuning. Neuron 37:663–680

    Article  PubMed  CAS  Google Scholar 

  • Monier C, Fournier J, Frégnac Y (2008) In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices. J Neurosci Methods 169:323–365

    Article  PubMed  CAS  Google Scholar 

  • Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical neurons in vivo. J Neurophysiol 79:1450–1460

    PubMed  Google Scholar 

  • Piwkowska Z, Pospischil M, Brette R, Sliwa J, Rudolph-Lilith M, Bal T, Destexhe A (2008) Characterizing synaptic conductance fluctuations in cortical neurons and their influence on spike generation. J Neurosci Methods 169:302–322

    Article  PubMed  Google Scholar 

  • Pospischil M, Piwkowska Z, Rudolph M, Bal T, Destexhe A (2007) Calculating event-triggered average synaptic conductances from the membrane potential. J Neurophysiol 97:2544–2552

    Article  PubMed  Google Scholar 

  • Prescott SA, De Koninck Y (2003) Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc Natl Acad Sci USA 100:2076–2081

    Article  PubMed  CAS  Google Scholar 

  • Rapp M, Yarom Y, Segev I (1992) The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Comput 4:518–533

    Article  Google Scholar 

  • Richardson MJ (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys Rev E 69:051918

    Article  Google Scholar 

  • Risken H (1984) The Fokker Planck equation: methods of solution and application. Springer, Berlin

    Book  Google Scholar 

  • Robinson HP, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157–165

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2001) Correlation detection and resonance in neural systems with distributed noise sources. Phys Rev Lett 86:3662–3665

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2003a) Characterization of subthreshold voltage fluctuations in neuronal membranes. Neural Comput 15:2577–2618

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2003b) A fast-conducting, stochastic integrative mode for neocortical dendrites in vivo. J Neurosci 23:2466–2476

    PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2005) An extended analytic expression for the membrane potential distribution of conductance-based synaptic noise. Neural Comput 17:2301–2315

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Destexhe A (2006) On the use of analytic expressions for the voltage distribution to analyze intracellular recordings. Neural Comput 18:917–922

    Google Scholar 

  • Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884–2896

    Article  PubMed  Google Scholar 

  • Rudolph M, Pelletier J-G, Paré D, Destexhe A (2005) Characterization of synaptic conductances and integrative properties during electrically-induced EEG-activated states in neocortical neurons in vivo. J Neurophysiol 94:2805–2821

    Article  PubMed  Google Scholar 

  • Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280–5290

    Article  PubMed  CAS  Google Scholar 

  • Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389–394

    Article  PubMed  CAS  Google Scholar 

  • Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA (2003) Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci 23:10388–10401

    PubMed  CAS  Google Scholar 

  • Softky W (1994) Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58:13–41

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (2003) Neuronal substrates of sleep and epilepsy. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    PubMed  CAS  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–446

    Article  PubMed  CAS  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373:33–36

    Article  PubMed  CAS  Google Scholar 

  • Wilent W, Contreras D (2005) Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat Neurosci 8:1364–1370

    Article  PubMed  CAS  Google Scholar 

  • Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8:1760–1767

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The experimental data shown here were obtained in collaboration with Thierry Bal, Diego Contreras, Jean-Marc Fellous, Denis Paré, Zuzanna Piwkowska, Mircea Steriade and Igor Timofeev. The models and analyses were done in collaboration with Sami El Boustani, Martin Pospischil, Michelle Rudolph and Terrence Sejnowski. Research supported by the CNRS, ANR (HR-CORTEX project), HFSP and the European Community (FACETS project FP6-15879; BrainScales project FP7-269921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Destexhe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Destexhe, A. (2013). 20 Years of “Noise”: Contributions of Computational Neuroscience to the Exploration of the Effect of Background Activity on Central Neurons. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_8

Download citation

Publish with us

Policies and ethics