Skip to main content

The More We Look, the More Biological Variation We See: How Has and Should This Influence Modeling of Small Networks?

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

  • 2314 Accesses

Abstract

Models of the small neuronal networks from invertebrates, especially rhythmically active central pattern generators, have not only been useful experimental tools for circuit analyses but also been instrumental in revealing general principles of neuronal network function. This ability of small network models to illuminate basic mechanisms attests to their heuristic power. In the 20 years since the first CNS meeting, theoretical studies, now supported abundantly by experimental analyses in several different networks and species, have shown that functional network activity arises in animals and models even though parameters (e.g., the intrinsic membrane properties (maximal conductances) of the neurons and the strengths of the synaptic connections) show two to fivefold animal-to-animal variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartos M, Manor Y, Nadim F, Marder E, Nusbaum MP (1999) Coordination of fast and slow rhythmic neuronal circuits. J Neurosci 19:6650–6660

    PubMed  CAS  Google Scholar 

  • Bartos M, Nusbaum MP (1997) Intercircuit control of motor pattern modulation by presynaptic inhibition. J Neurosci 17:2247–2256

    PubMed  CAS  Google Scholar 

  • Brookings T, Grashow R, Marder E (2012) Statistics of neuronal identification with open- and closed-loop measures of intrinsic excitability. Front Neural Circuits 6:19

    Article  PubMed  Google Scholar 

  • Bucher D, Prinz AA, Marder E (2005) Animal-to-animal variability in motor pattern production in adults and during growth. J Neurosci 25:1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Doloc-Mihu A, Calabrese R (2011) A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. J Biol Phys 37:263–283

    Article  PubMed  Google Scholar 

  • Gaiteri C, Rubin JE (2011) The interaction of intrinsic dynamics and network topology in determining network burst synchrony. Front Comput Neurosci 5:10

    Article  PubMed  Google Scholar 

  • Goaillard JM, Taylor AL, Schulz DJ, Marder E (2009) Functional consequences of animal-to-animal variation in circuit parameters. Nat Neurosci 12:1424–1430

    Article  PubMed  CAS  Google Scholar 

  • Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87:1129–1131

    PubMed  Google Scholar 

  • Grashow R, Brookings T, Marder E (2010) Compensation for variable intrinsic neuronal excitability by circuit-synaptic interactions. J Neurosci 30:9145–9156

    Article  PubMed  CAS  Google Scholar 

  • Grashow R, Brookings T, Marder E (2009) Reliable neuromodulation from circuits with variable underlying structure. Proc Natl Acad Sci USA 106:11742–11746

    Article  PubMed  CAS  Google Scholar 

  • LoFaro T, Koppell N, Marder E, Hooper SL (1994) The Effect of ih currents on bursting patterns of pairs of coupled neurons. In: Eeckmann FH (ed) Computation in neurons and neural systems. Kluwer Academic Publishers. Boston, pp 15–20

    Article  PubMed  CAS  Google Scholar 

  • Mamiya A, Nadim F (2004) Dynamic interaction of oscillatory neurons coupled with reciprocally inhibitory synapses acts to stabilize the rhythm period. J Neurosci 24:5140–5150

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Manor Y, Nadim F, Bartos M, Nusbaum MP (1998) Frequency control of a slow oscillatory network by a fast rhythmic input: pyloric to gastric mill interactions in the crab stomatogastric nervous system. Ann N Y Acad Sci 860:226–238

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Tobin AE, Grashow R (2007) How tightly tuned are network parameters? Insight from computational and experimental studies in small rhythmic motor networks. Prog Brain Res 165:193–200

    Article  PubMed  Google Scholar 

  • Marder E, Tang LS (2010) Coordinating different homeostatic processes. Neuron 66:161–163

    Article  PubMed  CAS  Google Scholar 

  • Marder E (2011) Variability, compensation, and modulation in neurons and circuits. PNAS 108(suppl 3):15542–15548

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138

    Article  PubMed  CAS  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213

    Article  PubMed  CAS  Google Scholar 

  • Nadim F, Zhao S, Zhou L, Bose A (2011) Inhibitory feedback promotes stability in an oscillatory network. J Neural Eng 8:065001

    Article  PubMed  CAS  Google Scholar 

  • Norris BJ, Weaver AL, Wenning A, Garciá PA, Calabrese RL (2007a) A central pattern generator producing alternative outputs: pattern, strength and dynamics of premotor synaptic input to leech heart motor neurons. J Neurophysiol 98(5):2992–3005

    Article  PubMed  Google Scholar 

  • Norris BJ, Weaver AL, Wenning A, Garciá PA, Calabrese RL (2007b) A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input. J Neurophysiol 98(5):2983–2991

    Article  PubMed  Google Scholar 

  • Norris BJ, Weaver AL, Morris LG, Wenning A, Garcia PA, Calabrese RL (2006) A central pattern generator producing alternative outputs: temporal pattern of premotor activity. J Neurophysiol 96:309–326

    Article  PubMed  Google Scholar 

  • Norris BJ, Wenning A, Wright TM, Calabrese RL (2011) Constancy and variability in the output of a central pattern generator. J Neurosci 31:4663–4674

    Article  PubMed  CAS  Google Scholar 

  • Olypher A, Cymbalyuk G, Calabrese RL (2006) Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons. J Neurophysiol 96:2857–2867

    Article  PubMed  Google Scholar 

  • Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998–4015

    Article  PubMed  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Prinz AA (2007) Computational exploration of neuron and neural network models in neurobiology. Methods Mol Biol 401:167–179

    Article  PubMed  Google Scholar 

  • Prinz AA (2010) Computational approaches to neuronal network analysis. Philos Trans R Soc Lond B Biol Sci 365:2397–2405

    Article  PubMed  Google Scholar 

  • Roffman RC, Norris BJ, Calabrese RL (2012) Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J Neurophysiol 107:1681–1693

    Article  PubMed  Google Scholar 

  • Schulz DJ, Goaillard JM, Marder EE (2007) Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. PNAS 104:13187–13191

    Article  PubMed  Google Scholar 

  • Skinner FK, Gramoll S, Calabrese RL, Kopell N, Marder E (1994) Frequency control in biological half-center oscillators. In: Eeckmann FH (ed) Computation in neurons and neural systems. Kluwer Academic Publishers. Boston, pp 223–228

    Article  PubMed  CAS  Google Scholar 

  • Sorensen M, DeWeerth S, Cymbalyuk G, Calabrese RL (2004) Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. J Neurosci 24:5427–5438

    Article  PubMed  CAS  Google Scholar 

  • Tang LS, Goeritz ML, Caplan JS, Taylor AL, Fisek M, Marder E (2010) Precise temperature compensation of phase in a rhythmic motor pattern. PLoS Biol 8

    Google Scholar 

  • Tobin AE, Cruz-Bermudez ND, Marder E, Schulz DJ (2009) Correlations in ion channel mRNA in rhythmically active neurons. PLoS One 4:e6742

    Article  PubMed  Google Scholar 

  • Wright TM Jr, Calabrese RL (2011a) Contribution of motoneuron intrinsic properties to fictive motor pattern generation. J Neurophysiol 106:538–553

    Article  PubMed  Google Scholar 

  • Wright TM Jr, Calabrese RL (2011b) Patterns of presynaptic activity and synaptic strength interact to produce motor output. J Neurosci 31:17555–17571

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Calabrese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calabrese, R.L. (2013). The More We Look, the More Biological Variation We See: How Has and Should This Influence Modeling of Small Networks?. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_7

Download citation

Publish with us

Policies and ethics