Skip to main content

The Emergence of Community Models in Computational Neuroscience: The 40-Year History of the Cerebellar Purkinje Cell

  • Chapter
  • First Online:
20 Years of Computational Neuroscience

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 9))

Abstract

The previous chapter in this volume considers the 20-year development of technology supporting the reuse and reproducibility of computational models. This chapter considers the specific case of the 40-year history of modeling cerebellar Purkinje cells, resulting in the emergence of one of the first “community models” in computational neuroscience. The chapter traces the model-based progress in understanding the relationship between Purkinje cell structure and function, as well as the implications of those results for our understanding of the function of this cell and the cerebellum in general. Using the history of Purkinje cell modeling as an example, the chapter also identifies the importance of the development of community models as a base for the eventual establishment of a quantitative understructure for neuroscience as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams ZR, Warrier A, Trauner D, Zhang X, Abrams ZR, Warrier A, Trauner D, Zhang X (2010) A signal processing analysis of Purkinje cells in vitro. Front Neural Circuits 4:13

    PubMed  Google Scholar 

  • Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2:794–804

    Article  CAS  Google Scholar 

  • Achard P, De Schutter E (2008) Calcium, synaptic plasticity and intrinsic homeostasis in Purkinje neuron models. Front Comput Neurosci 2:8

    Article  PubMed  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Antunes G, De Schutter E (2012) A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression. J Neurosci 32:9288–9300

    Article  PubMed  CAS  Google Scholar 

  • Anwar H, Hong S, Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum 11:681–693

    Article  CAS  Google Scholar 

  • Ascoli GA (2007) Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics 5:154–160

    Article  PubMed  Google Scholar 

  • Baldi P, Vanier MC, Bower JM (1998) On the use of Bayesian methods for evaluating compartmental neural models. J Comput Neurosci 5:285–314

    Article  PubMed  CAS  Google Scholar 

  • Barto AG, Fagg AH, Sitkoff N, Houk JC (1999) A cerebellar model of timing and prediction in the control of reaching. Neural Comput 11:565–594

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol 32:1044–1055

    PubMed  CAS  Google Scholar 

  • Blum EK, Wang X (1990) Design for Purkinje cells. In: Eeck AFH (ed) Analysis and modeling of neural systems. Kluwer Academic, Boston, pp 123–129

    Google Scholar 

  • Blum EK, Khademi PM, Thompson RF (1993) Model and simulation of a simplified cerebellar neural network for classical conditioning of the rabbit eyeblink response. In: Proceedings of analysis and modeling of neural systems, vol 2. Kluwer Academic

    Google Scholar 

  • Bower JM (1990) Reverse engineering the nervous system: an anatomical, physiological, and computer based approach. In: Zornetzer S, Davis J, Lau C (eds) An introduction to neural and electronic networks. Academic, New York, pp 3–24

    Google Scholar 

  • Bower JM (1997a) What do parallel fibers do? Commentary on “the detection and generation of sequences as a key to cerebellar function: experiments and theory” by: Valentino Braitenberg, Detlef Heck, and Fahad Sultan Behavioral Brain Sci 20:229–277

    Google Scholar 

  • Bower JM (1997b) Is the cerebellum sensory for motor’s sake, of motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res 114:483–516

    Google Scholar 

  • Bower JM (1997c) The cerebellum and the control of sensory data acquisition. In: Schmahmann J (ed) International review of neurobiology vol 41: the cerebellum and cognition, 1997(null) edn. Academic, San Diego, CA, pp 489–513

    Google Scholar 

  • Bower JM (2002) The organization of cerebellar cortical circuitry revisited: implications for function. Ann N Y Acad Sci 978:135–155

    Article  PubMed  Google Scholar 

  • Bower JM (2010) Model-founded explorations of the roles of molecular layer inhibition in regulating Purkinje cell responses in cerebellar cortex: more trouble for the beam hypothesis. Front Cell Neurosci 4:27

    PubMed  Google Scholar 

  • Bower JM (2012) The computational structure of the cerebellar molecular layer. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of cerebellum and cerebellar disorders. Springer, Berlin

    Google Scholar 

  • Bower JM, Beeman D (1995) The book of GENESIS. Springer, New York

    Book  Google Scholar 

  • Bower JM, Beeman D (2007) Constructing realistic neural simulations with GENESIS. Methods Mol Biol 401:103–125

    Article  PubMed  Google Scholar 

  • Bower JM, Parsons LM (2003) Rethinking the “lesser brain”. Sci Am 289:50–57

    Article  PubMed  Google Scholar 

  • Bower JM, Woolston DC (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. J Neurophysiol 49:745–766

    PubMed  CAS  Google Scholar 

  • Bower JM, Woolston DC, Gibson JM (1980) Congruence of spatial patterns of receptive field projections to Purkinje cell and granule cell layers in the cerebellar hemispheres of the rat. Soc Neurosci Abstr 6:511

    Google Scholar 

  • Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334–346

    Article  PubMed  CAS  Google Scholar 

  • Brown ME, Ariel M (2009) Topography and response timing of intact cerebellum stained with absorbance voltage-sensitive dye. J Neurophysiol 101:474–490

    Article  PubMed  Google Scholar 

  • Brown S-A, Loew LM (2012) Computational analysis of calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons associated with ataxia. BMC Syst Biol 6:70

    Article  PubMed  CAS  Google Scholar 

  • Brown S-A, Moraru II, Schaff JC, Loew LM (2011) Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling. J Comput Neurosci 31:385–400. Available at: http://www.springerlink.com/index/10.1007/s10827-011-0317-0

    Google Scholar 

  • Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43:745–757

    PubMed  CAS  Google Scholar 

  • Bunow B, Segev I, Fleshman JW (1985) Modeling the electrical behavior of anatomically complex neurons using a network analysis program: excitable membrane. Biol Cybern 53:41–56

    Article  PubMed  CAS  Google Scholar 

  • Buonomano DV, Mauk MD (1994) Neural-network model of the cerebellum—temporal discrimination and the timing of motor-responses. Neural Comput 6:38–55

    Article  Google Scholar 

  • Bush PC, Sejnowski TJ (1990) Simulations of a reconstructed cerebellar Purkinje cell based on simplified channel kinetics. Neural Comput 3:321–332

    Article  Google Scholar 

  • Cajal S (1911) Histologie du System Nerveux de l’Homme et des Vertebres. Maloine, Paris

    Google Scholar 

  • Calvin WH (1969) Dendritic spikes revisited. Science 166:637–638

    Article  PubMed  CAS  Google Scholar 

  • Calvin WH, Hellerstein D (1969) Dendritic spikes versus cable properties. Science 163:96–97

    Article  PubMed  CAS  Google Scholar 

  • Carrillo RR, Ros E, Boucheny C, Coenen OJ (2008) A real-time spiking cerebellum model for learning robot control. Biosystems 94:18–27

    Article  PubMed  Google Scholar 

  • Cavelier P, Pouille F, Desplantez T, Beekenkamp H, Bossu JL (2002) Control of the propagation of dendritic low-threshold Ca(2+) spikes in Purkinje cells from rat cerebellar slice cultures. J Physiol 540:57–72

    Article  PubMed  CAS  Google Scholar 

  • Chauvet P, Chauvet GA (1999) Purkinje local circuits with delays: mathematical conditions of stability for learning and retrieval. Neural Netw 12:59–77

    Article  PubMed  Google Scholar 

  • Chono K, Takagi H, Koyma S, Suzuki H, Ito E (2003) A cell model study of calcium influx mechanism regulated by calcium-dependent potassium channels in Purkinje cell dendrites. J Neurosci Methods 129:115–127

    Article  PubMed  CAS  Google Scholar 

  • Cohen D, Yarom Y (1998) Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers. Proc Natl Acad Sci USA 95:15032–15036

    Article  PubMed  CAS  Google Scholar 

  • Coop AD, Reeke GNJ (2001) The composite neuron: a realistic one-compartment Purkinje cell model suitable for large-scale neuronal network simulations. J Comput Neurosci 10:173–186

    Article  PubMed  CAS  Google Scholar 

  • Coop AD, Cornelis H, Santamaria F (2010) Dendritic excitability modulates dendritic information processing in a Purkinje cell model. Front Comput Neurosci 4:6

    PubMed  Google Scholar 

  • Cornelis H, Coop AD, Rodriquez M, Beeman D, Bower JM (2010) Using models to collaborate, communicate, and publish: an introduction to GENESIS 3.0 and the future of computational neurobiology. In: Proceedings of CNS 2010

    Google Scholar 

  • Cornelis H, Coop AD, Bower JM (2011) A federated design for a neurobiological simulation engine: the CBI federated software architecture. PLoS One 7(1):e28956

    Article  CAS  Google Scholar 

  • de Gruijl JR, van der Smagt P, De Zeeuw CI (2009) Anticipatory grip force control using a cerebellar model. Neuroscience 162:777–786

    Article  PubMed  CAS  Google Scholar 

  • De Schutter E (1994) Modelling the cerebellar Purkinje cell: experiments in computo. Prog Brain Res 102:427–441

    Article  PubMed  Google Scholar 

  • De Schutter E (1997) A new functional role for cerebellar long-term depression. Prog Brain Res 114:529–542

    Article  PubMed  Google Scholar 

  • De Schutter E (1998) Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J Neurophysiol 80:504–519

    PubMed  Google Scholar 

  • De Schutter E (1999) Using realistic models to study synaptic integration in cerebellar Purkinje cells. Rev Neurosci 10:233–245

    PubMed  Google Scholar 

  • De Schutter E (2012) The importance of stochastic signaling processes in the induction of long-term synaptic plasticity, Neural Networks, Available online 7 December 2012, ISSN 0893-6080, 10.1016/j.neunet.2012.11.015

    Google Scholar 

  • De Schutter E, Bower JM (1992) Purkinje neuron simulation on the Intel Touchstone Delta with GENESIS. In: Mihaly T, Messina P (eds) Proceedings of the grand challenge computing fair. CCSF Publishing, Pasadena, CA, pp 268–279

    Google Scholar 

  • De Schutter E, Bower JM (1993) Integration of synchronous and asynchronous synaptic inputs in a detailed compartmental model of the cerebellar Purkinje cell. In: Bower JM, Eeckman F (eds) Computation and neural systems 1992. Kluwer Press, Boston, pp 355–362

    Chapter  Google Scholar 

  • De Schutter E, Bower JM (1994a) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375–400

    PubMed  Google Scholar 

  • De Schutter E, Bower JM (1994b) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401–419

    PubMed  Google Scholar 

  • De Schutter E, Bower JM (1994c) Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci USA 91:4736–4740

    Article  PubMed  Google Scholar 

  • De Schutter E, Steuber V (2009) Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162:816–826

    Article  PubMed  CAS  Google Scholar 

  • de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P, Rousseau C, Barbour B, Léna C (2008) High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron 58:775–788

    Article  PubMed  CAS  Google Scholar 

  • Dean P, Porrill J (2011) Evaluating the adaptive-filter model of the cerebellum. J Physiol 589:3459–3470

    Article  PubMed  CAS  Google Scholar 

  • Dean P, Porrill J, Ekerot C-F, Jorntell H (2009) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11:30–43

    Article  PubMed  CAS  Google Scholar 

  • Dizon M-J, Khodakhah K (2011) The role of interneurons in shaping Purkinje cell responses in the cerebellar cortex. J Neurosci 31:10463–10473

    Article  PubMed  CAS  Google Scholar 

  • Dodge FA, Cooley JW (1973) Action potential of the motorneuron. IBM J Res Develop 17:219–229

    Article  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966a) Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res 1:17–29

    PubMed  CAS  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966b) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol (Lond) 182:268–296

    CAS  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin

    Book  Google Scholar 

  • Eccles JC, Faber DS, Murphy JT, Sabah NH, Taborikova H (1972) Investigation on integration of mossy fiber inputs to Purkyne cells in the anterior lobe. Exp Brain Res 13:54–77

    Article  Google Scholar 

  • Fernandez FR, Engbers JDT, Turner RW (2007) Firing dynamics of cerebellar Purkinje cells. J Neurophysiol 98:278–294

    Article  PubMed  Google Scholar 

  • Forrest MD, Wall MJ, Press DA, Feng J (2012) The sodium-potassium pump controls the intrinsic firing of the cerebellar Purkinje neuron. PLoS One 7:e51169

    Article  PubMed  CAS  Google Scholar 

  • Freeman JA, Nicholson C (1975) Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 38:369–382

    PubMed  CAS  Google Scholar 

  • Gähwiler BH, Llano I (1989) Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. J Physiol (Lond) 417:105–122

    Google Scholar 

  • Gauck V, Jaeger D (2003) The contribution of NMDA and AMPA conductances to the control of spiking in neurons of the deep cerebellar nuclei. J Neurosci 23:8109–8118

    PubMed  CAS  Google Scholar 

  • Genet S, Sabarly L, Guigon E, Berry H, Delord B (2010) Dendritic signals command firing dynamics in a mathematical model of cerebellar Purkinje cells. Biophys J 99:427–436

    Article  PubMed  CAS  Google Scholar 

  • Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219–235

    Article  PubMed  CAS  Google Scholar 

  • Gundappa-Sulur G, De Schutter E, Bower JM (1999) Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol 408:580–596

    Article  PubMed  CAS  Google Scholar 

  • Heck D, Sultan F (2002) Cerebellar structure and function: making sense of parallel fibers. Hum Mov Sci 21:411–421

    Article  PubMed  Google Scholar 

  • Heck D, Borst A, Antkowiak B (2003) Passive spatial and temporal integration of excitatory synaptic inputs in cerebellar Purkinje cells of young rats. Neurosci Lett 341:79–83

    Article  PubMed  CAS  Google Scholar 

  • Heck DH, Thach WT, Keating JG (2007) On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement. Proc Natl Acad Sci USA 104:7658–7663

    Article  PubMed  CAS  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9:1179–1209

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Hagiwara S (1989) Kinetics and distribution of voltage-gated Ca, Na and K channels on the somata of rat cerebellar Purkinje cells. Pflugers Arch 413:463–469

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    PubMed  CAS  Google Scholar 

  • Holmes WR, Rall W (1992) Electrotonic length estimates in neurons with dendritic tapering or somatic shunt. J Neurophysiol 68:1421–1437

    PubMed  CAS  Google Scholar 

  • Holtzman T, Rajapaksa T, Mostofi A, Edgley SA (2006) Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol (Lond) 574:491–507

    Article  CAS  Google Scholar 

  • Hong S, Optican LM (2008) Interaction between Purkinje cells and inhibitory interneurons may create adjustable output waveforms to generate timed cerebellar output. PLoS one 3:e2770

    Article  PubMed  CAS  Google Scholar 

  • Howell FW, Dyhrfjeld-Johnsen J, Maex R, Goddard N, De Schutter E (2000) A large scale model of the cerebellar cortex using PGENESIS. Neurocomputing 32–33:1041–1046

    Article  Google Scholar 

  • Isope P, Barbour B (2002) Properties of unitary granule cell: Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22:9668–9678

    PubMed  CAS  Google Scholar 

  • Isope P, Hildebrand ME, Snutch TP (2012) Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons. Cerebellum 11:651–665

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    PubMed  CAS  Google Scholar 

  • Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    Article  PubMed  Google Scholar 

  • Jaeger D, Bower JM (1999) Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. J Neurosci 19:6090–6101

    PubMed  CAS  Google Scholar 

  • Jaeger D, De Schutter E, Bower JM (1993) Prolonged activation following brief synaptic input in the cerebellar Purkinje cell: intracellular recording and compartmental modeling. In: Bower JM, Eeckman F (eds) Computation and neural systems 1992. Kluwer Press, Boston, pp 343–348

    Chapter  Google Scholar 

  • Jaeger D, De Schutter E, Bower JM (1996) The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. J Neurosci 17:91–106

    Google Scholar 

  • Kaneda M, Wakamori M, Ito C, Akaike N (1990) Low-threshold calcium current in isolated Purkinje cell bodies of rat cerebellum. J Neurophysiol 63:1046–1051

    PubMed  CAS  Google Scholar 

  • Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899–4912

    PubMed  CAS  Google Scholar 

  • Kistler WM, De Zeeuw CI (2002) Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Neural Comput 14:2597–2626

    Article  PubMed  Google Scholar 

  • Kitamura K, Häusser M (2011) Dendritic calcium signaling triggered by spontaneous and sensory-­evoked climbing fiber input to cerebellar Purkinje cells in vivo. J Neurosci 31:10847–10858

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K, Kano M (2012) Dendritic calcium signaling in cerebellar Purkinje cell, Neural Networks, Available online 5 September 2012, ISSN 0893-6080, 10.1016/j.neunet.2012.08.001

    Google Scholar 

  • Kolb FP, Arnold G, Lerch R, Straka H, Buttner-Ennever J (1997) Spatial distribution of field potential profiles in the cat cerebellar cortex evoked by peripheral and central inputs. Neuroscience 81:1155–1181

    Article  PubMed  CAS  Google Scholar 

  • Konnerth A, Dreessen J, Augustine GJ (1992) Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci USA 89:7051–7055

    Article  PubMed  CAS  Google Scholar 

  • Kreiner L, Jaeger D (2004) Synaptic shunting by a baseline of synaptic conductances modulates responses to inhibitory input volleys in cerebellar Purkinje cells. Cerebellum 3:112–125

    Article  PubMed  Google Scholar 

  • Kuhn T (1962) The structure of scientific revolutions, 4(null) edn. Chicago University Press, Chicago

    Google Scholar 

  • Kulagina IB, Korogod SM, Horcholle-Bossavitt G, Batini C, Tyc-Dumont S (2008) Phase relationships between calcium and voltage oscillations in different dendrites of Purkinje neurons. Neurophysiology 145:404–411

    Article  CAS  Google Scholar 

  • Kulagina IB (2008) Phase relationships between calcium and voltage oscillations in different dendrites of Purkinje Neurons. Proceedings of the International School “Problems of Experimental, Clinical and Theoretical Neurosciences”. Dnepropetrovsk, Ukraine, May 2–5, 2008. Neirofiziologiya/Neurophysiology, 40(5–6):477–485

    Article  CAS  Google Scholar 

  • Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN (1992) Calcium transients in cerebellar Purkinje neurons evoked by intracellelular stimulation. J Neurophysiol 68:1167–1177

    PubMed  CAS  Google Scholar 

  • Li W-K, Hausknecht MJ, Stone P, Mauk MD (2012) Using a million cell simulation of the cerebellum: Network scaling and task generality, Neural Networks, Available online 20 November 2012, ISSN 0893-6080, 10.1016/j.neunet.2012.11.005

    Google Scholar 

  • Llinas R (1982) General discussion: radial connectivity in the cerebellar cortex: a novel view regarding the functional organization of the molecular layer. In: Palay SL, Chan-Palay V (eds) The cerebellum: new vistas, 0(null)th edn, Exp. Brain Res. Suppl. vol. 6. Springer, New York, pp 189–194

    Chapter  Google Scholar 

  • Llinas R, Hillman DE (1969) Physiological and morphological organization of cerebellar circuits in various vertebrates. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago, pp 43–76

    Google Scholar 

  • Llinas R, Nicholson C (1976) Reversal properties of climbing fiber potential in cat Purkinje cells: an example of a distributed synapse. J Neurophysiol 39:311–323

    PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M (1980a) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol 305:197–213

    PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M (1980b) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol 305:171–195

    PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M (1992) The electrophysiology of the cerebellar Purkinje cell revisited. In: Llinas R, Sotelo C (eds) The cerebellum revisited. Springer Verlag, New York, pp 167–181

    Chapter  Google Scholar 

  • Llinas R, Nicholson C, Freeman JA, Hillman DE (1968) Dendritic spikes and their inhibition in alligator Purkinje cells. Science 163:1132–1135

    Article  Google Scholar 

  • Llinas R, Bloedel JR, Hillman DE (1969a) Functional characterization of neuronal circuitry of frog cerebellar cortex. J Neurophysiol 32:847–870

    PubMed  CAS  Google Scholar 

  • Llinas R, Bloedel JR, Roberts W (1969b) Antidromic invasion of Purkinje cells in frog cerebellum. J Neurophysiol 32:881–891

    PubMed  CAS  Google Scholar 

  • Lu H, Hartmann MJ, Bower JM (2005) Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer. J Neurophysiol 94:1849–1860

    Article  PubMed  Google Scholar 

  • Lu H, Esquivel AV, Bower JM (2009) 3D electron microscopic reconstruction of segments of rat cerebellar purkinje cell dendrites receiving ascending and parallel fiber granule cell synaptic inputs. J Comp Neurol 514:583–594

    Article  PubMed  Google Scholar 

  • Mandelblat Y, Etzion Y, Grossman Y, Golomb D (2001) Period doubling of calcium spike firing in a model of a Purkinje cell dendrite. J Comput Neurosci 11:43–62

    Article  PubMed  CAS  Google Scholar 

  • Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne M-L (2010) Postsynaptic signal transduction models for long-term potentiation and depression. Front Comput Neurosci 4:152

    Article  PubMed  Google Scholar 

  • Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D (2012) Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457–487

    Article  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–471

    CAS  Google Scholar 

  • Mauk MD, Ohyama T (2004) Extinction as new learning versus unlearning: considerations from a computer simulation of the cerebellum. Learn Mem 11:566–571

    Article  PubMed  Google Scholar 

  • Medina JF, Mauk MD (2000) Computer simulation of cerebellar information processing. Nat Neurosci 3(Suppl):1205–1211

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN (1992) Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J Neurophysiol 68:1178–1189

    PubMed  CAS  Google Scholar 

  • Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, Miyakawa H (2001) Low-­threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Res 891:106–115

    Article  PubMed  CAS  Google Scholar 

  • Mocanu OD, Oliver J, Santamaria F, Bower JM (2000) Branching point effects on the passive properties of the cerebellar granule cell axon. Neurocomputing 32–33:207–212

    Article  Google Scholar 

  • Mugnaini E (1972) The histology and cytology of the cerebellar cortex. In: Larsell O, Jansen J (eds) The comparitive anatomy and histology of the cerebellum: the human cerebellum, cerebellar connections, and cerebellar cortex. University of Minnesota Press, Minneapolis, pp 201–262

    Google Scholar 

  • Ogasawara H, Doi T, Doya K, Kawato M (2007) Nitric oxide regulates input specificity of long-­term depression and context dependence of cerebellar learning. PLoS Comput Biol 3:e179

    Article  PubMed  CAS  Google Scholar 

  • Ohyama T, Voicu H, Kalmbach B, Mauk MD (2010) A decrementing form of plasticity apparent in cerebellar learning. J Neurosci 30:16993–17003

    Article  PubMed  CAS  Google Scholar 

  • Pellionisz A (1970) Computer simulation of the pattern transfer of large cerebellar neuronal fields. Acta Biochim Biophys Acad Sci Hung 5:71–79

    PubMed  CAS  Google Scholar 

  • Pellionisz A, Llinas R (1977) A computer model of cerebellar Purkinje cells. Neuroscience 2:37–48

    Article  PubMed  CAS  Google Scholar 

  • Pellionisz A, Szentagothai J (1973) Dynamic single unit simulation of a realistic cerebellar network model. Brain Res 49:83–99

    Article  PubMed  CAS  Google Scholar 

  • Pellionisz A, Szentagothai J (1974) Dynamic single unit simulation of a realistic cerebellar network model. II. Purkinje cell activity within the basic circuit and modified by inhibitory systems. Brain Res 68:19–40

    Article  PubMed  CAS  Google Scholar 

  • Pugh JR, Raman IM (2009) Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei. Trends Neurosci 32:170–177

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input–output relations. In: Reiss R (ed) Neural theory and modeling. Stanford University Press, Stanford, CA, pp 73–97

    Google Scholar 

  • Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol 31:884–915

    PubMed  CAS  Google Scholar 

  • Rancz EA, Häusser M (2010) Dendritic spikes mediate negative synaptic gain control in cerebellar Purkinje cells. Proc Natl Acad Sci USA 107:22284–22289

    Article  PubMed  CAS  Google Scholar 

  • Rapp M, Yarom Y, Segev I (1992) The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Comput 4:518–533

    Article  Google Scholar 

  • Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive models of guinea-­pig cerebellar Purkinje cells. J Physiol (Lond) 474:101–118

    CAS  Google Scholar 

  • Regan LJ (1991) Voltage-dependent calcium currents in Purkinje cells from rat cerebellar vermis. J Neurosci 11:2259–2269

    PubMed  CAS  Google Scholar 

  • Rokni D, Llinas R, Yarom Y (2008) Stars and stripes in the cerebellar cortex: a voltage sensitive dye study. Front Syst Neurosci 1:1–9

    Google Scholar 

  • Roth A, Häusser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J Physiol 535:445–472

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Bower JM (2004) Background synaptic activity modulates the response of a modeled Purkinje cell to paired afferent input. J Neurophysiol 93:237–250

    Article  PubMed  Google Scholar 

  • Santamaria F, Jaeger D, De Schutter E, Bower JM (2002) Modulatory effects of parallel fiber and molecular layer interneuron synaptic activity on purkinje cell responses to ascending segment input: a modeling study. J Comput Neurosci 13:217–235

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648

    Article  PubMed  CAS  Google Scholar 

  • Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248–263

    Article  PubMed  Google Scholar 

  • Santamaria F, Wils S, De Schutter E, Augustine GJ (2011) The diffusional properties of dendrites depend on the density of dendritic spines. Eur J Neurosci 34:561–568

    Article  PubMed  Google Scholar 

  • Sarro LM (2004) Characterization of dendrites as nonlinear computation devices. Neurocomputing 58–60:581–586

    Article  Google Scholar 

  • Segev I, Fleshman JW, Miller JP, Bunow B (1985) Modeling the electrical behavior of anatomically complex neurons using a network analysis program: passive membrane. Biol Cybern 53:27–40

    Article  PubMed  CAS  Google Scholar 

  • Shelton DP (1985) Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience 14:111–131

    Article  PubMed  CAS  Google Scholar 

  • Shin SL, De Schutter E (2006) Dynamic synchronization of Purkinje cell simple spikes. J Neurophysiol 96:3485–3491

    Article  PubMed  Google Scholar 

  • Shin S-L, Hoebeek FE, Schonewille M, De Zeeuw CI, Aertsen A, De Schutter E (2007) Regular patterns in cerebellar Purkinje cell simple spike trains. PLoS One 2:e485

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom PJ, Rancz EA, Roth A, Häusser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88:769–840

    Article  PubMed  CAS  Google Scholar 

  • Solinas S, Maex R, De Schutter E (2003) Synchronization of Purkinje cell pairs along the parallel fiber axis: a model. Neurocomputing 52–54:97–102

    Article  Google Scholar 

  • Solinas SMG, Maex R, Schutter E (2006) Dendritic amplification of inhibitory postsynaptic potentials in a model Purkinje cell. Eur J Neurosci 23:1207–1218

    Article  PubMed  Google Scholar 

  • Spoelstra J, Schweighofer N, Arbib MA (2000) Cerebellar learning of accurate predictive control for fast-reaching movements. Biol Cybern 82:321–333

    Article  PubMed  CAS  Google Scholar 

  • Staub C, De Schutter E, Knopfel T (1994) Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells. J Comput Neurosci 1:301–311

    Article  PubMed  CAS  Google Scholar 

  • Steuber V, De Schutter E (2001) Long-term depression and recognition of parallel fibre patterns in a multi-compartmental model of a cerebellar Purkinje cell. Neurocomputing 38:383–388

    Article  Google Scholar 

  • Steuber V, De Schutter E (2002) Rank order decoding of temporal parallel fibre input patterns in a complex Purkinje cell model. Neurocomputing 44:183–188

    Article  Google Scholar 

  • Steuber V, Willshaw D (2004) A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. J Comput Neurosci 17:149–164

    Article  PubMed  Google Scholar 

  • Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Hausser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121–136

    Article  PubMed  CAS  Google Scholar 

  • Sultan F, Bower JM (1998) Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis. J Comp Neurol 393:353–373

    Article  PubMed  CAS  Google Scholar 

  • Tahon K, Wijnants M, De Schutter E, Maex R (2011) Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input. J Neurophysiol 105:1327–1341

    Article  PubMed  Google Scholar 

  • Tank DW, Sugimori M, Connor JA, Llin s RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773–777

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Middleton SJ, Knöpfel T, Whittington MA (2008) Model of very fast (>75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. Eur J Neurosci 28:1603–1616

    Article  PubMed  Google Scholar 

  • Travis BJ (1990) A computational model of the cerebellum. In: Eeckmann (ed), Analysis and Modeling of Neural Systems. Kluwer Academic Publishers, Boston, pp 131–137

    Google Scholar 

  • Van Geit W, Achard P, De Schutter E, Van Geit W, Achard P, De Schutter E (2007) Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Front Neuroinform 1:1

    PubMed  Google Scholar 

  • Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on ­dendritic morphology. J Neurophysiol 85:926–937

    PubMed  CAS  Google Scholar 

  • Vladimirescu A, Zhang K, Newton AR, Pederson DO, Sangiovani-Vincentelli A (1981) SPICE. University of California, Berkeley, CA

    Google Scholar 

  • Vos BP, Maex R, Volny-Luraghi A, De Schutter E (1999) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6

    PubMed  CAS  Google Scholar 

  • Walter JT, Dizon M-J, Khodakhah K (2009) The functional equivalence of ascending and parallel fiber inputs in cerebellar computation. J Neurosci 29:8462–8473

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Strahlendorf JC, Strahlendorf HK (1991) A transient voltage-dependent outward potassium current in mammalian cerbellar Purkinje cells. Brain Res 567:153–158

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Takagi H, Miyasho T, Inoue M, Kirino Y, Kudo Y, Miyakawa H (1998) Differential roles of two types of voltage-gated Ca2+ channels in the dendrites of rat cerebellar Purkinje neurons. Brain Res 791:43–55

    Article  PubMed  CAS  Google Scholar 

  • Womack M, Khodakhah K (2002a) Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons. J Neurosci 22:10603–10612

    PubMed  CAS  Google Scholar 

  • Womack MD, Khodakhah K (2002b) Characterization of large conductance Ca2+-activated K+ channels in cerebellar Purkinje neurons. Eur J Neurosci 16:1214–1222

    Article  PubMed  Google Scholar 

  • Womack MD, Khodakhah K (2004) Dendritic control of spontaneous bursting in cerebellar Purkinje cells. J Neurosci 24:3511–3521

    Article  PubMed  CAS  Google Scholar 

  • Womack MD, Chevez C, Khodakhah K (2004) Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons. J Neurosci 24:8818–8822

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Nagao S (2012) A computational mechanism for unified gain and timing control in the cerebellum. PLoS One 7:e33319

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Tanaka S (2007) A spiking network model for passage-of-time representation in the cerebellum. Eur J Neurosci 26:2279–2292

    Article  PubMed  Google Scholar 

  • Yuen GL, Hockberger PE, Houk JC (1995) Bistability in cerebellar Purkinje cell dendrites modelled with high-threshold calcium and delayed-rectifier potassium channels. Biol Cybern 73:375–388

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1969) Field potentials generated by dendritic spikes and synaptic potentials. Science 165:409–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Bower Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bower, J.M. (2013). The Emergence of Community Models in Computational Neuroscience: The 40-Year History of the Cerebellar Purkinje Cell. In: Bower, J. (eds) 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1424-7_5

Download citation

Publish with us

Policies and ethics