Skip to main content

Ultrasound Despeckle Methods

  • Chapter
  • First Online:
Ultrasound Imaging

Abstract

Speckle, a form of multiplicative noise, affects imaging applications such as medical Ultrasound (US). The effectiveness of a segmentation and registration process can be improved when the noise is removed without affecting important image features. This chapter details the main speckle reducing filtering categories and provides an extended comparison of various state-of-the-art algorithms focusing on the anisotropic filters family. A series of in silico experiments has been designed with the aim to compare the performances of the state-of-the-art approaches on synthetic images corrupted by a controlled amount of speckle noise. Additional in vivo experiments have been designed for illustrating the interest of using an accurate filtering method as pre-processing stage, in order to improve the performance of the segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    EDISON: Code for the Edge Detection and Image SegmentatiON system, http://www.caip.rutgers.edu/riul/research/code/EDISON/index.html

  2. 2.

    http://viva.ee.virginia.edu/research_ultrasounddenoising.html

  3. 3.

    http://serdis.dis.ulpgc.es/~krissian/HomePage/

  4. 4.

    Implementation in Matlab software and computed on a Pentium IV dual core Intel processor.

  5. 5.

    http://www.shawnlankton.com/2007/05/active-contours/

References

  1. Aysal TC, Barner KE (2007) Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images. IEEE Trans Med Imaging 26(5):712–727

    Article  PubMed  Google Scholar 

  2. Stoitsis J, Golemati S, Nikita KS, Nicolaides AN (2004) Characterization of carotid atherosclerosis based on motion and texture features and clustering using fuzzy c-means, Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE 1(1–5):1407–1410 Sept. doi: 10.1109/IEMBS.2004.1403437

    Google Scholar 

  3. Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A (2003) Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging 22(7):902–912

    Article  CAS  PubMed  Google Scholar 

  4. Bleck JS, Ranft U, Gebel M, Hecker H, Westhoff-Beck M, Thiesemann C, Wagner S, Manns M (1996) Random field models in textural analysis of ultrasonic images of the liver. IEEE Trans Med Imaging 15(6):796–801

    Article  CAS  PubMed  Google Scholar 

  5. Noble JA, Boukerroui D (2006) Ultrasound image segmentation: a survey. IEEE Trans Med Imaging 25(8):987–1010

    Article  PubMed  Google Scholar 

  6. Munteanu C, Morales FC, Fernandez JG, Rosa A, Deniz LG (2008) Enhancing obstetric and gynecology ultrasound images by adaptation of the speckle reducing anisotropic diffusion filter. Artif Intell Med 43(3):223–242

    Article  PubMed  Google Scholar 

  7. Li B, Acton ST (2007) Active contour external force using vector field convolution for image segmentation. IEEE Trans Image Process 16(8):2096–2106

    Article  PubMed  Google Scholar 

  8. Tsai DY, Watanabe S (1998) A method for optimization of fuzzy reasoning by genetic algorithms and its application to discrimination of myocardial heart disease. Proc IEEE Nucl Sci Symp Med Imag Conf 3:1756–1761

    Google Scholar 

  9. Hua Li, Anthony Yezzi (2007) Local or Global Minima: Flexible Dual-Front Active Contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 1–14, January

    Google Scholar 

  10. Lee TS, Segars WP, Tsui BMW (2005) Study of parameters characterizing space-time gibbs priors for 4d map-rbi-em in gated myocardial perfusion spect. Nucl Sci Symp Conf Rec 4:2124–2128

    Google Scholar 

  11. Deschamps T, Malladi R, Ravve I (2004) Fast evolution of image manifolds and application to filtering and segmentation in 3d medical images. IEEE Trans Vis Comput Graph 10:525–535

    Article  PubMed  Google Scholar 

  12. Delingette H (2000) General object reconstruction based on simplex meshes. Int J Comput Vis 32(2):111–146

    Article  Google Scholar 

  13. Jensen A.J (1996) A signal processing approach, Cambridge University Press, New York, ISBN 0-521-46484-6

    Google Scholar 

  14. Chivers RC (1977) The scattering of ultrasound by human tissues, some theorical models. Ultrasound Med Biol 3:1–13

    Article  CAS  PubMed  Google Scholar 

  15. Wagner RF, Smith SW, Sandrik JM, Lopez H (1983) Statistics of speckle in ultrasound b-scans. IEEE Trans Sonics Ultrasonics 30(3):156–163

    Article  Google Scholar 

  16. Yu Y, Acton S (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11(11):1260–1271

    Article  PubMed  Google Scholar 

  17. Bamber JC, Dickinson RJ (1980) Ultrasonic b-scanning: a computer simulation. Phys Med Biol 25(3):463–479

    Article  CAS  PubMed  Google Scholar 

  18. Moon TK, Stirling WC (2000) Mathematical Methods and Algorithms for Signal Processing. Moon (Vol. 204, p. 937). Prentice Hall.

    Google Scholar 

  19. Abbot J, Thurstone F (1979) Acoustic speckle: theory and experimental analysis. Ultrasound Imag 1:303–324

    Article  Google Scholar 

  20. Michailovich O, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroel Freq Contr 53(1):64–78

    Article  Google Scholar 

  21. Gravel P, Beaudoin G, De Guise JA (2004) A method for modeling noise in medical images. 23(10):1221–1232

    Google Scholar 

  22. Dainty JC (1984) Laser speckle and related phenomena. Laser speckle and related phenomena, XVII, 342 pp. 146 figs. Springer-Verlag, Berlin, Heidelberg, New York.  Also topics in applied physics, vol 9

    Google Scholar 

  23. Wagner RF, Insana MF, Smith SW (1988) Fundamental correlation lengths of coherent speckle in medical ultrasonic images. IEEE Trans Ultrason Ferroelectr Freq Control 35(1):34–44

    Article  CAS  PubMed  Google Scholar 

  24. Jain AK (1989) Fundamentals of digital image processing, Prentice-Hall, Inc. Upper Saddle River, NJ, USA © 1989. ISBN:0-13-336165-9

    Google Scholar 

  25. Loizou C, Pattichis C, Christodoulou CI, Istepanian R, Pantziaris M, Nicolaides A (2005) Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroel Freq Contr 52(10):1653–1669

    Article  Google Scholar 

  26. Huang T, Yang G, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust Speech, Signal Process 27(1):13–18

    Article  Google Scholar 

  27. Loupas T, McDicken W, Allan P (1989) An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans Circuit Syst 36:129–135

    Article  Google Scholar 

  28. Tay PC, Acton ST, Hossack JA (2006) A stochastic approach to ultrasound despeckling. Biomedical Imaging: Nano to Macro, 3rd IEEE International Symposium on, 6–9 April, 221–224, doi: 10.1109/ISBI.2006.1624892

    Google Scholar 

  29. Tay PC, Acton ST, Hossack JA (2006) Ultrasound Despeckling Using an Adaptive Window Stochastic Approach. Image Processing, 2006 IEEE International Conference on, 8–11 Oct. 2549–2552, doi: 10.1109/ICIP.2006.312979

    Google Scholar 

  30. Jiang M, Crookes D (2006) High-performance 3d median filter architecture for medical image despeckling. Electron Lett, 42(24):229–240

    Article  Google Scholar 

  31. Donoho D (1994) De-noising by soft-thresholding. 41(3):613–627

    Google Scholar 

  32. Zhong S, Cherkassky V (2000) Image denoising using wavelet thresholding and model selection. Int conf Image Process 3:262–265

    Google Scholar 

  33. Achim A, Bezerianos A, Tsakalides P (2001) Novel bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans Med Imaging 20:772–783

    Article  CAS  PubMed  Google Scholar 

  34. Bao P, Zhang L (2003) Noise reduction for magnetic resonance images via adaptative multiscale products thresholding. IEEE Trans Med Imaging 22(9):1089–1099

    Article  PubMed  Google Scholar 

  35. Gupta S, Kaur L, Chauhan RC, Saxena SC (2004) A wavelet based statistical approach for speckle reduction in medical ultrasound images. Med Biol Eng Comput 42:534–537

    Article  Google Scholar 

  36. Figueiredo MAT, Nowak RD (2005) A bound optimization approach to waveletbased image deconvolution. Image Processing, 2005. ICIP 2005. IEEE International Conference on, 2:II–782–5, 11–14 Sept. doi: 10.1109/ICIP.2005.1530172

    Google Scholar 

  37. Laine AF (2000) Wavelets in temporal and spatial processing of biomedical images. Annual Rev Biomed Eng 2:511–550

    Article  CAS  Google Scholar 

  38. Y. Jin, E. Angelini, A. Laine (2005) Wavelets in Medical Image Processing: Denoising, Segmentation, and Registration, in Handbook of Biomedical Image Analysis Vol 1- Segmentation Models - Part a, Ed.: D. L. W. Jasjit Suri, Swamy Laximinarayan Kluwer Academic/ Plenum Publishers, 305–358

    Google Scholar 

  39. Hadamard J (1902) Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin 13:49–52

    Google Scholar 

  40. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction in positron emission tomography. 1(2):113–122

    CAS  Google Scholar 

  41. Vogel CR (2002) Computational methods for inverse problems, 10:183 SIAM

    Google Scholar 

  42. Sanches JM, Nascimento JC, Marques JS (2008) Medical image noise reduction using the sylvester-lyapunov equation. IEEE Trans Image Process 17(9):1522–1539

    Article  PubMed  Google Scholar 

  43. Huang CY, Soltz MA, Kopacz M, Mow VC, Ateshian GA (2003) Experimental verification of the roles of intrinsic matrix viscoelasticity and tension–compression nonlinearity in the biphasic response of cartilage. J Biomech Eng 125:84–93

    Article  PubMed  Google Scholar 

  44. Gleich D, Datcu M (2006) Gauss-markov model for wavelet-based sar image despeckling. IEEE Signal Process Lett 13(6):365–368

    Article  Google Scholar 

  45. Xu J, Osher S (2007) Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans Image Process 16(2):534–544

    Article  PubMed  Google Scholar 

  46. Perona P, Malik J (1990) Scale space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 12:629–639

    Article  Google Scholar 

  47. Black M, Sapiro G, Marimont D, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 7(3):421–432

    Article  CAS  PubMed  Google Scholar 

  48. Krissian K, Westin CF, Kikinis R, Vosburgh KG (2007) Oriented speckle reducing anisotropic diffusion. IEEE Trans Image Process 16(5):1412–1424

    Article  PubMed  Google Scholar 

  49. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images, Computer Vision. Sixth International Conference on, pp.839–846, 4–7 Jan doi: 10.1109/ICCV.1998.710815

    Google Scholar 

  50. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans PAMI 24(5):603–619

    Article  Google Scholar 

  51. Barash D, Comaniciu D (2004) A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vis Comput 22(1):73–81

    Article  Google Scholar 

  52. Guo Y, Cheng HD, Tian J, Zhang Y (2009) A novel approach to speckle reduction in ultrasound imaging. Ultrasound Med Biol 35(4):628–640

    Article  PubMed  Google Scholar 

  53. Thakur A, Anand RS (2007) Speckle reduction in ultrasound medical images using adaptive filter based on second order statistics. J Med Eng Technol 31(4):263–279

    Article  CAS  PubMed  Google Scholar 

  54. Dantas RG, Costa ET (2007) Ultrasound speckle reduction using modified gabor filters. IEEE Trans Ultrason Ferroel Freq Contr 54(3):530–538

    Article  Google Scholar 

  55. Balocco S, Gatta C, Pujol O, Mauri J, Radeva P (2010b) Srbf: speckle reducing bilateral filtering. Ultrasound Med Biol 36(8):1353–1363

    Article  PubMed  Google Scholar 

  56. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  CAS  PubMed  Google Scholar 

  57. Michailovich O, Tannenbaum A (2007) Segmentation of medical ultrasound images using active contours. Int Conf Image Process 5:513–516

    Google Scholar 

  58. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytologist 11(2):37–50

    Article  Google Scholar 

  59. Eran B, Shimon U (2002) Class-specific, top-down segmentation, 109–124, ECCV

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Balocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Balocco, S., Gatta, C., Ferré, J.M., Radeva, P. (2012). Ultrasound Despeckle Methods. In: Sanches, J., Laine, A., Suri, J. (eds) Ultrasound Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1180-2_3

Download citation

Publish with us

Policies and ethics