Skip to main content

Targeted Delivery Using Biodegradable Polymeric Nanoparticles

  • Chapter
  • First Online:
Fundamentals and Applications of Controlled Release Drug Delivery

Abstract

Biodegradable polymeric nanoparticles have been extensively used for targeted drug delivery mostly because of their potentialities to carry multifunctional properties. This chapter shows that nanoparticles can be made of different types of materials and prepared by multiple preparation methods that allow for the entrapment of all types of drugs, small and large, hydrophilic and lipophilic. Moreover, this chapter makes clear that polymer chemistry and the discovery of new grafting methods have opened the way to modification, leading to the covalent linkage on their surface by either poly(ethylene glycol) for long blood circulation time, or ligands for specific biorecognition. The future of such targeting systems relies on the discovery of new and specific targets that will permit the use of targeted nanoparticles in several therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apo E:

Apolipoprotein E

Av:

Avidin

BSA:

Bovine serum albumin

cLABL:

Cyclo-(1,12)-penITDGEATDSGC

CS:

Chitosan

CuAAC:

Copper-catalyzed azide-alkyne cycloaddition

DCC:

Dicyclocarbodiimide

DLS:

Dynamic light scattering

DMAP:

4-Dimethylaminopyridine

EDC:

1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide

EGF:

Epithelial growth factor

EGFR:

Epidermal growth factor receptor

FA:

Folic acid

HA:

Hyaluronic acid

HAS:

Human serum albumin

HER2:

Human epidermal receptor-2

ICAM-1:

Intercellular adhesion molecule-1

Mal:

Maleimide

MPS:

Mononuclear phagocyte system

MW :

Molecular weight

NAv:

Neutravidin

NCs:

Nanocapsules

NHS:

N-hydroxysuccinimide

NPs:

Nanoparticles

NSs:

Nanospheres

PACA:

Poly(alkylcyanoacrylate)

PBLG:

Poly(benzyl l-glutamate)

PCL:

Poly(ε-caprolactone)

PCS:

Photon correlation spectroscopy

PDS:

Pyridyl disulfide

PEG:

Poly(ethylene glycol)

PEI:

Polyethyleneimine

PEO:

Poly(ethyleneoxide)

PHDCA:

Poly(hexadecylcyanoacrylate)

PLA:

Poly(lactic acid) or polylactide

PLGA:

Poly(lactide-co-glycolide)

PLL:

Poly-l-lysine

PMMA:

Poly(methylmethacrylate)

polyHis:

Polyhistidine

PPO:

Poly(propylene oxide)

PS:

Polystyrene

PVL:

Poly(δ-valerolactone)

QELS:

Quasi-elastic light scattering

ROP:

Ring-opening polymerization

SEM:

Scanning electron microscopy

siRNA:

Small interfering ribonucleic acid

Sulfo-MBS:

m-maleimidobenzoyl-N-hydroxy-sulfosuccinimide ester

TEM:

Transmission electron microscopy

Tf:

Transferrin

TMCC:

2-Methyl, 2-carboxytrimethylene carbonate

References

  1. Birrenbach G, Speiser P (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65:1763–1766

    PubMed  CAS  Google Scholar 

  2. Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31:331–332

    PubMed  CAS  Google Scholar 

  3. Fattal E, Rojas J, Roblot-Treupel L, Andremont A, Couvreur P (1991) Ampicillin-loaded liposomes and nanoparticles: comparison of drug loading, drug release and in vitro antimicrobial activity. J Microencapsul 8:29–36

    PubMed  CAS  Google Scholar 

  4. Fattal E, Rojas J, Youssef M, Couvreur P, Andremont A (1991) Liposome-entrapped ampicillin in the treatment of experimental murine listeriosis and salmonellosis. Antimicrob Agents Chemother 35:770–772

    PubMed  CAS  Google Scholar 

  5. Kopf H, Joshi RK, Soliva M, Speiser P (1977) Study of micelle polymerization in the presence of low molecular weight drugs, Part 2: Mode of binding of incorporated low molecular weight model substances to polyacrylamide-based nanoparticles. Pharm Ind 39:993–997

    CAS  Google Scholar 

  6. Kreuter J, Speiser PP (1976) In vitro studies of poly(methyl methacrylate) adjuvants. J Pharm Sci 65:1624–1627

    PubMed  CAS  Google Scholar 

  7. Couvreur P, Roland M, Speiser P (1982) Biodegradable submicroscopic particles containing a biologically active substance and composition containing them. US Patent 4329332

    Google Scholar 

  8. Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P (1984) Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5:65–68

    PubMed  CAS  Google Scholar 

  9. Seijo B, Fattal E, Roblot-Treupel L, Couvreur P (1990) Design of nanoparticles of less than 50 nm in diameter, preparation, characterization and drug loading. Int J Pharm 62:1–7

    CAS  Google Scholar 

  10. Lenaerts V, Raymond P, Juhasz J, Simard MA, Jolicoeur C (1989) New method for the preparation of cyanoacrylic nanoparticles with improved colloidal properties. J Pharm Sci 78:1051–1052

    PubMed  CAS  Google Scholar 

  11. Muller RH, Lherm C, Herbort J, Couvreur P (1990) In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 11:590–595

    PubMed  CAS  Google Scholar 

  12. Rollot JM, Couvreur P, Roblot-Treupel L, Puisieux F (1986) Physicochemical and morphological characterization of polyisobutyl cyanoacrylate nanocapsules. J Pharm Sci 75:361–364

    PubMed  CAS  Google Scholar 

  13. Lescure F, Seguin C, Breton P, Bourrinet P, Roy D, Couvreur P (1994) Preparation and characterization of novel poly(methylidene malonate 2.1.2.)-made nanoparticles. Pharm Res 11:1270–1277

    PubMed  CAS  Google Scholar 

  14. De Keyser JL, Poupaert JH, Dumont P (1991) Poly(diethyl methylidenemalonate) nanoparticles as a potential drug carrier: preparation, distribution and elimination after intravenous and peroral administration to mice. J Pharm Sci 80:67–70

    PubMed  Google Scholar 

  15. Mbela TKM, Poupaert JH, Dumont P, Hoemer SA (1993) Development of poly(dialkylmethylidene malonate) nanoparticles as drug carriers. Int J Pharm 92:71–79

    CAS  Google Scholar 

  16. Chauvierre C, Labarre D, Couvreur P, Vauthier C (2003) Radical emulsion polymerization of alkylcyanoacrylates initiated by the redox system dextran−cerium(IV) under acidic aqueous conditions. Macromolecules 36:6018–6027

    CAS  Google Scholar 

  17. al Khouri N, Fessi H, Roblot-Treupel L, Devissaguet JP, Puisieux F (1986) An original procedure for preparing nanocapsules of polyalkylcyanoacrylates for interfacial polymerization. Pharm Acta Helv 61:274–281

    PubMed  CAS  Google Scholar 

  18. El-Samaligy MS, Rohdewald P, Mahmoud HA (1986) Polyalkyl cyanoacrylate nanocapsules. J Pharm Pharmacol 38:216–218

    PubMed  CAS  Google Scholar 

  19. Gasco M, Trotta M (1986) Nanoparticles from microemulsions. Int J Pharm 29:267–268

    CAS  Google Scholar 

  20. Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P (2000) Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res 17:707–714

    PubMed  CAS  Google Scholar 

  21. Vanderhoff JW, El Aasser MS, Ugelstad J (1979) Polymer emulsification process. U.S. Patent

    Google Scholar 

  22. Krause HJ, Schwartz A, Rohdewald P (1986) Interfacial polymerization, a useful method for the preparation of polymethylcyanoacrylate nanoparticles. Drug Dev Ind Pharm 12:527–552

    CAS  Google Scholar 

  23. Tice TR, Gilley RM (1985) Preparation of injectable controlled release microcapsules by a solvent-evaporation process. J Control Release 2:343–352

    CAS  Google Scholar 

  24. Koosha F, Muller RH, Davis SS, Davis MC (1989) The surface chemical structure of poly(b-hydroxybutyrate) microparticles produced by solvent evaporation process. J Control Release 9:149–153

    CAS  Google Scholar 

  25. Koosha F, Muller RH, Washington C (1987) Production of polyhydroxybutyrate (PHB) nanoparticles for drug targeting. J Pharm Pharmacol 39:136P

    Google Scholar 

  26. Verrecchia T, Huve P, Bazile D, Veillard M, Spenlehauer G, Couvreur P (1993) Adsorption/desorption of human serum albumin at the surface of poly(lactic acid) nanoparticles prepared by a solvent evaporation process. J Biomed Mater Res 27:1019–1028

    PubMed  CAS  Google Scholar 

  27. Gomez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E (2007) Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm 331:153–159

    PubMed  CAS  Google Scholar 

  28. Losa C, Marchal-Heussler L, Orallo F, Vila Jato JL, Alonso MJ (1993) Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 10:80–87

    PubMed  CAS  Google Scholar 

  29. Pisani E, Tsapis N, Paris J, Nicolas V, Cattel L, Fattal E (2006) Polymeric nano/microcapsules of liquid perfluorocarbons for ultrasonic imaging: physical characterization. Langmuir 22:4397–4402

    PubMed  CAS  Google Scholar 

  30. Leroux JC, Allemann E, Doelker E, Gurny R (1995) New approach for the preparation of nanoparticles by an emulsification–diffusion method. Eur J Pharm Biopharm 41:14–18

    CAS  Google Scholar 

  31. Quintanar-Guerrero D, Allemann E, Doelker E, Fessi H (1998) Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 15:1056–1062

    PubMed  CAS  Google Scholar 

  32. Moinard-Checot D, Chevalier Y, Briancon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion-diffusion process. J Colloid Interface Sci 317:458–468

    PubMed  CAS  Google Scholar 

  33. Mosqueira VC, Legrand P, Pinto-Alphandary H, Puisieux F, Barratt G (2000) Poly(d, l-lactide) nanocapsules prepared by a solvent displacement process: influence of the composition on physicochemical and structural properties. J Pharm Sci 89:614–626

    PubMed  CAS  Google Scholar 

  34. Allémann E, Gurny R, Doelker E (1992) Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm 87:247–253

    Google Scholar 

  35. Ibrahim H, Bindschaedler C, Doelker E, Buri P, Gurny R (1992) Aqueous nanodispersions prepared by a salting-out process. Int J Pharm 87:239–246

    CAS  Google Scholar 

  36. Fessi H, Devissaguet JP, Puisieux F, Thies C (1991) Process for the preparation of dispersible colloidal systems of a substance in the form of nanocapsules. US Patent 5049322

    Google Scholar 

  37. Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G, Vauthier C (2007) Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 344:33–43

    PubMed  CAS  Google Scholar 

  38. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsules formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    CAS  Google Scholar 

  39. Scheffel U, Rhodes BA, Natarajan TK, Wagner HN (1972) Albumin microspheres for study of the reticulo-endothelial system. J Nucl Med 13:498–503

    PubMed  CAS  Google Scholar 

  40. Zolle I, Rhodes BA, Wagner HN Jr (1970) Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation. Int J Appl Radiat Isot 21:155–167

    PubMed  CAS  Google Scholar 

  41. Gallo JM, Hung CT, Perrier DG (1984) Analysis of albumin microsphere preparation. Int J Pharm 22:63–74

    CAS  Google Scholar 

  42. Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles – a new colloidal drug delivery system. Pharm Acta Helv 53:17–23

    PubMed  CAS  Google Scholar 

  43. Oppenheim RC, Marty JJ, Stewart NF (1978) The labelling of gelatin nanoparticles with 99mTechnetium and their in vivo distribution after intravenous infection. Aust J Pharm Sci 7:113–117

    CAS  Google Scholar 

  44. Stainmesse S, Fessi H, Devissaguet JP, Puisieux F (1989) Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles. US Patent 374246.

    Google Scholar 

  45. Yoshioka T, Hashida M, Muranishi S, Sezaki H (1981) Specific delivery of mitomycin C to the liver, spleen and lung: nano- and microspherical carriers of gelatin. Int J Pharm 8:131–141

    Google Scholar 

  46. Edman P, Ekman B, Sjoholm I (1980) Immobilization of proteins in microspheres of biodegradable polyacryldextran. J Pharm Sci 69:838–842

    PubMed  CAS  Google Scholar 

  47. Artursson P, Edman P, Laakso T, Sjoholm I (1984) Characterization of polyacryl starch microparticles as carriers for proteins and drugs. J Pharm Sci 73:1507–1513

    PubMed  CAS  Google Scholar 

  48. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917

    PubMed  CAS  Google Scholar 

  49. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    PubMed  CAS  Google Scholar 

  50. Gomes dos Santos AL, Bochot A, Tsapis N, Artzner F, Bejjani RA, Thillaye-Goldenberg B, de Kozak Y, Fattal E, Behar-Cohen F (2006) Oligonucleotide-polyethylenimine complexes targeting retinal cells: structural analysis and application to anti-TGFbeta-2 therapy. Pharm Res 23:770–781

    PubMed  CAS  Google Scholar 

  51. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16:1576–1581

    PubMed  CAS  Google Scholar 

  52. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    PubMed  CAS  Google Scholar 

  53. Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–87

    PubMed  CAS  Google Scholar 

  54. Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP (2006) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78:620–628

    PubMed  CAS  Google Scholar 

  55. Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    PubMed  CAS  Google Scholar 

  56. Groves E, Dart AE, Covarelli V, Caron E (2008) Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 65:1957–1976

    PubMed  CAS  Google Scholar 

  57. Vachon E, Martin R, Plumb J, Kwok V, Vandivier RW, Glogauer M, Kapus A, Wang X, Chow CW, Grinstein S, Downey GP (2006) CD44 is a phagocytic receptor. Blood 107:4149–4158

    PubMed  CAS  Google Scholar 

  58. Caron E, Hall A (1998) Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721

    PubMed  CAS  Google Scholar 

  59. Swanson JA, Baer SC (1995) Phagocytosis by zippers and triggers. Trends Cell Biol 5:89–93

    PubMed  CAS  Google Scholar 

  60. Claus V, Jahraus A, Tjelle T, Berg T, Kirschke H, Faulstich H, Griffiths G (1998) Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem 273:9842–9851

    PubMed  CAS  Google Scholar 

  61. Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24

    PubMed  Google Scholar 

  62. Fang C, Shi B, Pei Y-Y, Hong M-H, Wu J, Chen H-Z (2006) In vivo tumor targeting of tumor necrosis factor-[alpha]-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    PubMed  CAS  Google Scholar 

  63. Carrstensen H, Müller RH, Müller BW (1992) Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake. Clin Nutr 11:289–297

    PubMed  CAS  Google Scholar 

  64. Miller CR, Bondurant B, McLean SD, McGovern KA, O’Brien DF (1998) Liposome−cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry 37:12875–12883

    PubMed  CAS  Google Scholar 

  65. Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein-surface interactions in the presence of polyethylene oxide. I. Simplified theory. J Colloid Interface Sci 142:149–158

    CAS  Google Scholar 

  66. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    PubMed  CAS  Google Scholar 

  67. Leroux JC, De Jaeghere F, Anner B, Doelker E, Gurny R (1995) An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(d, l-lactic acid) nanoparticles by human monocytes. Life Sci 57:695–703

    PubMed  CAS  Google Scholar 

  68. Peracchia TM (2003) Stealth nanoparticles for intravenous administration. STP Pharma Sci 13:7

    Google Scholar 

  69. Pavey KD, Olliff CJ (1999) SPR analysis of the total reduction of protein adsorption to surfaces coated with mixtures of long- and short-chain polyethylene oxide block copolymers. Biomaterials 20:885–890

    PubMed  CAS  Google Scholar 

  70. Dunn SE, Brindley A, Davis SS, Davies MC, Illum L (1994) Polystyrene-poly (ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm Res 11:1016–1022

    PubMed  CAS  Google Scholar 

  71. Peracchia MT, Vauthier C, Passirani C, Couvreur P, Labarre D (1997) Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles. Life Sci 61:749–761

    PubMed  CAS  Google Scholar 

  72. Stolnik S, Daudali B, Arien A, Whetstone J, Heald CR, Garnett MC, Davis SS, Illum L (2001) The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta 1514:261–279

    PubMed  CAS  Google Scholar 

  73. Vonarbourg A, Passirani C, Saulnier P, Benoit J-P (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27:4356–4373

    PubMed  CAS  Google Scholar 

  74. Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48

    CAS  Google Scholar 

  75. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller RH (2000) Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    PubMed  CAS  Google Scholar 

  76. Vittaz M, Bazile D, Spenlehauer G, Verrecchia T, Veillard M, Puisieux F, Labarre D (1996) Effect of PEO surface density on long-circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17:1575–1581

    PubMed  CAS  Google Scholar 

  77. Neal JC, Stolnik S, Schacht E, Kenawy ER, Garnett MC, Davis SS, Illum L (1998) In vitro displacement by rat serum of adsorbed radiolabeled poloxamer and poloxamine copolymers from model and biodegradable nanospheres. J Pharm Sci 87:1242–1248

    PubMed  CAS  Google Scholar 

  78. Díaz-López R, Libong D, Tsapis N, Fattal E, Chaminade P (2008) Quantification of pegylated phospholipids decorating polymeric microcapsules of perfluorooctyl bromide by reverse phase HPLC with a charged aerosol detector. J Pharm Biomed Anal 48:702–707

    PubMed  Google Scholar 

  79. Díaz-López R, Tsapis N, Santin M, Bridal SL, Nicolas V, Jaillard D, Libong D, Chaminade P, Marsaud V, Vauthier C, Fattal E (2010) The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 31:1723–1731

    PubMed  Google Scholar 

  80. Lemarchand C, Gref R, Couvreur P (2004) Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 58:327–341

    PubMed  CAS  Google Scholar 

  81. Labarre D, Vauthier C, Chauvierre C, Petri B, Müller R, Chehimi MM (2005) Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26:5075–5084

    PubMed  CAS  Google Scholar 

  82. Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Müller R, Costantini D, Couvreur P (2006) Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27:108–118

    PubMed  CAS  Google Scholar 

  83. Passirani C, Barratt G, Devissaguet J-P, Labarre D (1998) Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system. Life Sci 62:775–785

    PubMed  CAS  Google Scholar 

  84. Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M (1995) Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci 84:493–498

    PubMed  CAS  Google Scholar 

  85. Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R (2008) PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution. Int J Pharm 349:249–255

    PubMed  CAS  Google Scholar 

  86. Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16:215–233

    CAS  Google Scholar 

  87. Peracchia MT, Harnisch S, Pinto-Alphandary H, Gulik A, Dedieu JC, Desmaele D, d’Angelo J, Muller RH, Couvreur P (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275

    PubMed  CAS  Google Scholar 

  88. Calvo P, Gouritin B, Brigger I, Lasmezas C, Deslys J-P, Williams A, Andreux JP, Dormont D, Couvreur P (2001) PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods 111:151–155

    PubMed  CAS  Google Scholar 

  89. Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly([var epsilon]-caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–1704

    PubMed  CAS  Google Scholar 

  90. Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gomis JM, Appel M, d’Angelo J, Couvreur P (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60:121–128

    PubMed  CAS  Google Scholar 

  91. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  92. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    PubMed  CAS  Google Scholar 

  93. Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26:235–243

    PubMed  CAS  Google Scholar 

  94. Savage MD, Mattson G, Desai S, Nielander GW, Morgensen S, Conklin EJ (1992) Avidin-biotin chemistry: a handbook. Pierce Chemical Co, Rockford, IL

    Google Scholar 

  95. Wilchek M, Bayer EA (1990) Introduction to avidin-biotin technology. Methods Enzymol 184:5–13

    PubMed  CAS  Google Scholar 

  96. Cho KC, Kim SH, Jeong JH, Park TG (2005) Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(l-lysine) conjugate. Macromol Biosci 5:512–519

    PubMed  CAS  Google Scholar 

  97. Jeong Y-I, Seo S-J, Park I-K, Lee H-C, Kang I-C, Akaike T, Cho C-S (2005) Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly([gamma]-benzyl l-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int J Pharm 296:151–161

    PubMed  CAS  Google Scholar 

  98. Kim SH, Jeong JH, Chun KW, Park TG (2005) Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)−poly(ethylene glycol)−folate conjugate. Langmuir 21:8852–8857

    PubMed  CAS  Google Scholar 

  99. Nie Y, Zhang Z, Li L, Luo K, Ding H, Gu Z (2009) Synthesis, characterization and transfection of a novel folate-targeted multipolymeric nanoparticles for gene delivery. J Mater Sci Mater Med 20:1849–1857

    PubMed  CAS  Google Scholar 

  100. Park EK, Kim SY, Lee SB, Lee YM (2005) Folate-conjugated methoxy poly(ethylene glycol)/poly([var epsilon]-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 109:158–168

    PubMed  CAS  Google Scholar 

  101. Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866

    PubMed  CAS  Google Scholar 

  102. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn® H40, poly(l-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials 30:3009–3019

    PubMed  CAS  Google Scholar 

  103. Salem AK, Cannizzaro SM, Davies MC, Tendler SJB, Roberts CJ, Williams PM, Shakesheff KM (2001) Synthesis and characterisation of a degradable poly(lactic acid)−poly(ethylene glycol) copolymer with biotinylated end groups. Biomacromolecules 2:575–580

    PubMed  CAS  Google Scholar 

  104. Stella B, Arpicco S, Peracchia MT, Desmaële D, Hoebeke J, Renoir M, d’Angelo J, Cattel L, Couvreur P (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89:1452–1464

    PubMed  CAS  Google Scholar 

  105. Stella B, Marsaud V, Arpicco S, Geraud G, Cattel L, Couvreur P, Renoir J-M (2007) Biological characterization of folic acid-conjugated poly(H2NPEGCA-co-HDCA) nanoparticles in cellular models. J Drug Target 15:146–153

    PubMed  CAS  Google Scholar 

  106. Yang X, Deng W, Fu L, Blanco E, Gao J, Quan D, Shuai X (2008) Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326. J Biomed Mater Res A 86A:48–60

    CAS  Google Scholar 

  107. Yoo HS, Park TG (2004) Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 96:273–283

    PubMed  CAS  Google Scholar 

  108. Zhao H, Yung LYL (2008) Selectivity of folate conjugated polymer micelles against different tumor cells. Int J Pharm 349:256–268

    PubMed  CAS  Google Scholar 

  109. Zhou J, Romero G, Rojas E, Ma L, Moya S, Gao C (2010) Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting. J Colloid Interface Sci 345:241–247

    CAS  Google Scholar 

  110. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876

    PubMed  CAS  Google Scholar 

  111. Farokhzad O, Cheng J, Teply B, Sherifi I, Jon S, Kantoff P, Richie J, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6320

    PubMed  CAS  Google Scholar 

  112. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates. Cancer Res 64:7668–7672

    PubMed  CAS  Google Scholar 

  113. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105:2586–2591

    PubMed  CAS  Google Scholar 

  114. Kim D, Gao ZG, Lee ES, Bae YH (2009) In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer. Mol Pharm 6:1353–1362

    PubMed  CAS  Google Scholar 

  115. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH (2008) Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4:2043–2050

    PubMed  CAS  Google Scholar 

  116. Lee ES, Na K, Bae YH (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 91:103–113

    PubMed  CAS  Google Scholar 

  117. Lee H, Hoang B, Fonge H, Reilly R, Allen C (2010) Distribution of polymeric nanoparticles at the whole-body, tumor, and cellular levels. Pharm Res 27:2343–2355

    PubMed  CAS  Google Scholar 

  118. Lee H, Hu M, Reilly RM, Allen C (2007) Apoptotic epidermal growth factor (EGF)-conjugated block copolymer micelles as a nanotechnology platform for targeted combination therapy. Mol Pharm 4:769–781

    PubMed  CAS  Google Scholar 

  119. Noh T, Kook YH, Park C, Youn H, Kim H, Oh ET, Choi EK, Park HJ, Kim C (2008) Block copolymer micelles conjugated with anti-EGFR antibody for targeted delivery of anticancer drug. J Polym Sci Part A: Polym Chem 46:7321–7331

    CAS  Google Scholar 

  120. Pan J, Feng S-S (2008) Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials 29:2663–2672

    PubMed  CAS  Google Scholar 

  121. Pan J, Feng S-S (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183

    PubMed  CAS  Google Scholar 

  122. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149

    PubMed  Google Scholar 

  123. Wang Y, Wang X, Zhang Y, Yang S, Wang J, Zhang X, Zhang Q (2009) RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. J Drug Target 17:459–467

    PubMed  CAS  Google Scholar 

  124. Wang Z, Chui W-K, Ho PC (2009) Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells. Pharm Res 26:1162–1171

    PubMed  CAS  Google Scholar 

  125. Zeng F, Lee H, Allen C (2006) Epidermal growth factor-conjugated poly(ethylene glycol)-block- poly(δ-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug Chem 17:399–409

    PubMed  CAS  Google Scholar 

  126. Zhang N, Chittasupho C, Duangrat C, Siahaan TJ, Berkland C (2007) PLGA nanoparticle−peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug Chem 19:145–152

    PubMed  CAS  Google Scholar 

  127. Zhang Z, Huey Lee S, Feng S-S (2007) Folate-decorated poly(lactide-co-glycolide)-vitamin E TPGS nanoparticles for targeted drug delivery. Biomaterials 28:1889–1899

    PubMed  Google Scholar 

  128. Hu Z, Luo F, Pan Y, Hou C, Ren L, Chen J, Wang J, Zhang Y (2008) Arg-Gly-Asp (RGD) peptide conjugated poly(lactic acid)–poly(ethylene oxide) micelle for targeted drug delivery. J Biomed Mater Res A 85A:797–807

    CAS  Google Scholar 

  129. Jeong JH, Kim SH, Kim SW, Park TG (2005) In vivo tumor targeting of ODN-PEG-folic acid/PEI polyelectrolyte complex micelles. J Biomater Sci Polym Ed 16:1409–1419

    PubMed  CAS  Google Scholar 

  130. Pang Z, Lu W, Gao H, Hu K, Chen J, Zhang C, Gao X, Jiang X, Zhu C (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 128:120–127

    PubMed  CAS  Google Scholar 

  131. Lu W, Zhang Y, Tan Y-Z, Hu K-L, Jiang X-G, Fu S-K (2005) Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release 107:428–448

    PubMed  CAS  Google Scholar 

  132. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, Gao J (2004) cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew Chem Int Ed 43:6323–6327

    CAS  Google Scholar 

  133. Debotton N, Parnes M, Kadouche J, Benita S (2008) Overcoming the formulation obstacles towards targeted chemotherapy: in vitro and in vivo evaluation of cytotoxic drug loaded immunonanoparticles. J Control Release 127:219–230

    PubMed  CAS  Google Scholar 

  134. Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F (2007) Differential tumor cell targeting of anti-HER2 (Herceptin®) and anti-CD20 (Mabthera®) coupled nanoparticles. Int J Pharm 331:190–196

    PubMed  CAS  Google Scholar 

  135. Cirstoiu-Hapca A, Buchegger F, Bossy L, Kosinski M, Gurny R, Delie F (2009) Nanomedicines for active targeting: Physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur J Pharm Sci 38:230–237

    PubMed  CAS  Google Scholar 

  136. Nobs L, Buchegger F, Gurny R, Allémann E (2005) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17:139–145

    Google Scholar 

  137. Shi M, Ho K, Keating A, Shoichet MS (2009) Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv Funct Mater 19:1689–1696

    CAS  Google Scholar 

  138. Anhorn MG, Wagner S, Jr K, Langer K, von Briesen H (2008) Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjug Chem 19:2321–2331

    PubMed  CAS  Google Scholar 

  139. Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K (2007) Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 118:54–58

    PubMed  CAS  Google Scholar 

  140. Magadala P, Amiji M (2008) Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. AAPS J 10:565–576

    PubMed  CAS  Google Scholar 

  141. Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, Kreuter J, Langer K (2006) Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 317:1246–1253

    PubMed  CAS  Google Scholar 

  142. Steinhauser I, Spänkuch B, Strebhardt K, Langer K (2006) Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials 27:4975–4983

    PubMed  CAS  Google Scholar 

  143. Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71:251–256

    PubMed  CAS  Google Scholar 

  144. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Wagner S, Büchel C, von Briesen H, Kreuter J (2009) Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 137:78–86

    PubMed  CAS  Google Scholar 

  145. Chen S, Zhang X-Z, Cheng S-X, Zhuo R-X, Gu Z-W (2008) Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules 9:2578–2585

    PubMed  CAS  Google Scholar 

  146. Bae KH, Lee Y, Park TG (2007) Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules 8:650–656

    PubMed  CAS  Google Scholar 

  147. Lin A, Liu Y, Huang Y, Sun J, Wu Z, Zhang X, Ping Q (2008) Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int J Pharm 359:247–253

    PubMed  CAS  Google Scholar 

  148. Li Y, Ogris M, Wagner E, Pelisek J, Rüffer M (2003) Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers: preparation and in vitro evaluation. Int J Pharm 259:93–101

    PubMed  CAS  Google Scholar 

  149. Xiong X-B, Mahmud A, Uludağ H, Lavasanifar A (2008) Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm Res 25:2555–2566

    PubMed  CAS  Google Scholar 

  150. Xiong X-B, Ma Z, Lai R, Lavasanifar A (2010) The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Biomaterials 31:757–768

    PubMed  CAS  Google Scholar 

  151. Xiong X-B, Mahmud A, Uludaǧ H, Lavasanifar A (2007) Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(ε-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules 8:874–884

    PubMed  CAS  Google Scholar 

  152. Wagner E, Zenke M, Cotten M, Beug H, Birnstiel ML (1990) Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 87:3410–3414

    PubMed  CAS  Google Scholar 

  153. Sahoo SK, Labhasetwar V (2005) Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2:373–383

    PubMed  CAS  Google Scholar 

  154. Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340

    PubMed  CAS  Google Scholar 

  155. Acharya S, Dilnawaz F, Sahoo SK (2009) Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30:5737–5750

    PubMed  CAS  Google Scholar 

  156. Choi S-W, Kim J-H (2007) Design of surface-modified poly(d, l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release 122:24–30

    PubMed  CAS  Google Scholar 

  157. Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 108:84–96

    PubMed  CAS  Google Scholar 

  158. Dawson GF, Halbert GW (2000) The in vitro cell association of invasin coated polylactide-co-glycolide nanoparticles. Pharm Res 17:1420–1425

    PubMed  CAS  Google Scholar 

  159. Fernandes JC, Wang H, Jreyssaty C, Benderdour M, Lavigne P, Qiu X, Winnik FM, Zhang X, Dai K, Shi Q (2008) Bone-protective effects of nonviral gene therapy with folate-chitosan DNA nanoparticle containing interleukin-1 receptor antagonist gene in rats with adjuvant-induced arthritis. Mol Ther 16:1243–1251

    PubMed  CAS  Google Scholar 

  160. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26

    PubMed  CAS  Google Scholar 

  161. Liu P, Li Z, Zhu M, Sun Y, Li Y, Wang H, Duan Y (2010) Preparation of EGFR monoclonal antibody conjugated nanoparticles and targeting to hepatocellular carcinoma. J Mater Sci Mater Med 21:551–556

    PubMed  CAS  Google Scholar 

  162. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27:2060–2065

    PubMed  CAS  Google Scholar 

  163. Sahu S, Mallick S, Santra S, Maiti T, Ghosh S, Pramanik P (2010) In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci Mater Med 21:1587–1597

    PubMed  CAS  Google Scholar 

  164. Tosi G, Costantino L, Rivasi F, Ruozi B, Leo E, Vergoni AV, Tacchi R, Bertolini A, Vandelli MA, Forni F (2007) Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 122:1–9

    PubMed  CAS  Google Scholar 

  165. Banquy X, Gg L, Rabanel J-M, Argaw A, J-Fo B, Hildgen P, Giasson S (2008) Selectins ligand decorated drug carriers for activated endothelial cell targeting. Bioconjug Chem 19:2030–2039

    PubMed  CAS  Google Scholar 

  166. Hammady T, Rabanel J-M, Dhanikula RS, Leclair G, Hildgen P (2009) Functionalized nanospheres loaded with anti-angiogenic drugs: cellular uptake and angiosuppressive efficacy. Eur J Pharm Biopharm 72:418–427

    PubMed  CAS  Google Scholar 

  167. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    CAS  Google Scholar 

  168. Binder WH, Sachsenhofer R (2007) ‘Click’ chemistry in polymer and materials science. Macromol Rapid Commun 28:15–54

    CAS  Google Scholar 

  169. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    PubMed  CAS  Google Scholar 

  170. Le Droumaguet B, Nicolas J (2010) Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym Chem 1:563–598

    Google Scholar 

  171. Le Drournaguet B, Velonia K (2008) Click chemistry: a powerful tool to create polymer-based macromolecular chimeras. Macromol Rapid Commun 29:1073–1089

    Google Scholar 

  172. Lutz J-F (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025

    CAS  Google Scholar 

  173. Le Droumaguet B, Souguir H, Brambilla D, Verpillot R, Nicolas J, Taverna M, Couvreur P, Andrieux K (2011) Selegiline-functionalized, PEGylated poly(alkyl cyanoacrylate) nanoparticles to target the amyloid-β peptide. Int J Pharm 416:457–464

    Google Scholar 

  174. Nicolas J, Bensaid F, Desmaele D, Grogna M, Detrembleur C, Andrieux K, Couvreur P (2008) Synthesis of highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of click chemistry. Macromolecules 41:8418–8428

    CAS  Google Scholar 

  175. Lu J, Shi M, Shoichet MS (2008) Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors. Bioconjug Chem 20:87–94

    Google Scholar 

  176. Jubeli E, Moine L, Barratt G (2010) Synthesis, characterization, and molecular recognition of sugar-functionalized nanoparticles prepared by a combination of ROP, ATRP, and click chemistry. J Polym Sci Part A: Polym Chem 48:3178–3187

    CAS  Google Scholar 

  177. Danhier F, Ucakar B, Magotteaux N, Brewster ME, Préat V (2010) Active and passive tumor targeting of a novel poorly soluble cyclin dependent kinase inhibitor, JNJ-7706621. Int J Pharm 392:20–28

    PubMed  CAS  Google Scholar 

  178. Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H, Jérôme C, Marchand-Brynaert J, Feron O, Préat V (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 140:166–173

    PubMed  CAS  Google Scholar 

  179. Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jérôme C, Marchand-Brynaert J, Schneider Y-J, Préat V (2007) PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120:195–204

    PubMed  CAS  Google Scholar 

  180. Haun JB, Hammer DA (2008) Quantifying nanoparticle adhesion mediated by specific molecular interactions. Langmuir 24:8821–8832

    PubMed  CAS  Google Scholar 

  181. Lin A, Sabnis A, Kona S, Nattama S, Patel H, Dong J-F, Nguyen KT (2010) Shear-regulated uptake of nanoparticles by endothelial cells and development of endothelial-targeting nanoparticles. J Biomed Mater Res A 93A:833–842

    CAS  Google Scholar 

  182. Tseng C-L, Su W-Y, Yen K-C, Yang K-C, Lin F-H (2009) The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials 30:3476–3485

    PubMed  CAS  Google Scholar 

  183. Tseng C-L, Wang T-W, Dong G-C, Yueh-Hsiu Wu S, Young T-H, Shieh M-J, Lou P-J, Lin F-H (2007) Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 28:3996–4005

    PubMed  CAS  Google Scholar 

  184. Tseng C, Wu S, Wang W, Peng C, Lin F, Lin C, Young T, Shieh M (2008) Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials 29:3014–3022

    PubMed  CAS  Google Scholar 

  185. Aktaş Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF, Çelik HH, Demir AS, Hıncal AA, Dalkara T, Çapan Y, Couvreur P (2005) Development and brain delivery of chitosan−PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 16:1503–1511

    PubMed  Google Scholar 

  186. Deosarkar SP, Malgor R, Fu J, Kohn LD, Hanes J, Goetz DJ (2008) Polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid, and focal adhesion to sites of atherosclerosis. Biotechnol Bioeng 101:400–407

    PubMed  CAS  Google Scholar 

  187. Vinogradov S, Batrakova E, Li S, Kabanov A (1999) Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconjug Chem 10:851–860

    PubMed  CAS  Google Scholar 

  188. Blackwell JE, Dagia NM, Dickerson JB, Berg EL, Goetz DJ (2001) Ligand coated nanosphere adhesion to E- and P-selectin under static and flow conditions. Ann Biomed Eng 29:523–533

    PubMed  CAS  Google Scholar 

  189. Barbault-Foucher S, Gref R, Russo P, Guechot J, Bochot A (2002) Design of poly-epsilon-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release 83:365–375

    PubMed  CAS  Google Scholar 

  190. Gullberg E, Keita ÅV, SaY S, Andersson M, Caldwell KD, Söderholm JD, Artursson P (2006) Identification of cell adhesion molecules in the human follicle-associated epithelium that improve nanoparticle uptake into the Peyer’s patches. J Pharmacol Exp Ther 319:632–639

    PubMed  CAS  Google Scholar 

  191. Chittasupho C, Xie S-X, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ (2009) ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci 37:141–150

    PubMed  CAS  Google Scholar 

  192. Chavanpatil MD, Khdair A, Panyam J (2006) Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 6:2651–2663

    PubMed  CAS  Google Scholar 

  193. Hilgenbrink A, Low P (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146

    PubMed  CAS  Google Scholar 

  194. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401

    PubMed  CAS  Google Scholar 

  195. Rothberg KG, Ying YS, Kolhouse JF, Kamen BA, Anderson RG (1990) The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol 110:637–649

    PubMed  CAS  Google Scholar 

  196. Kim S, Jeong J, Cho K, Kim S, Park T (2005) Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly(ethylenimine). J Control Release 104:223–232

    CAS  Google Scholar 

  197. Patil YB, Toti US, Khdair A, Ma L, Panyam J (2008) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866

    PubMed  Google Scholar 

  198. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587

    PubMed  CAS  Google Scholar 

  199. Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 59:718–728

    PubMed  CAS  Google Scholar 

  200. Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y, Yan Z, Li Y (2005) In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm 288:361–368

    PubMed  CAS  Google Scholar 

  201. Jones AR, Shusta EV (2007) Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771

    PubMed  CAS  Google Scholar 

  202. Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K, Vyas SP (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14:45–53

    PubMed  CAS  Google Scholar 

  203. Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM (2000) Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood–brain barrier in mouse. J Pharmacol Exp Ther 292:1048–1052

    PubMed  CAS  Google Scholar 

  204. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    PubMed  CAS  Google Scholar 

  205. Han HD, Mangala LS, Lee JW, Shahzad MMK, Kim HS, Shen D, Nam EJ, Mora EM, Stone RL, Lu C, Lee SJ, Roh JW, Nick AM, Lopez-Berestein G, Sood AK (2010) Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res 16:3910–3922

    PubMed  CAS  Google Scholar 

  206. Ding B-S, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR (2006) Advanced drug delivery systems that target the vascular endothelium. Mol Interv 6:98–112

    PubMed  CAS  Google Scholar 

  207. Sakhalkar H, Dalal M, Salem A, Ansari R, Fu A, Kiani M, Kurjiaka D, Hanes J, Shakesheff K, Goetz D (2003) Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo. Proc Natl Acad Sci USA 100:15895–15900

    PubMed  CAS  Google Scholar 

  208. Muro S, Dziubla T, Qiu W, Leferovich J, Cui X, Berk E, Muzykantov VR (2006) Endothelial targeting of high-affinity multivalent polymer nanocarriers directed to intercellular adhesion molecule 1. J Pharmacol Exp Ther 317:1161–1169

    PubMed  CAS  Google Scholar 

  209. Nobs L, Buchegger F, Gurny R, Allemann E (2004) Poly(lactic acid) nanoparticles labeled with biologically active neutravidin (TM) for active targeting. Eur J Pharm Biopharm 58:483–490

    PubMed  CAS  Google Scholar 

  210. Nobs L, Buchegger F, Gurny R, Allemann E (2006) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17:139–145

    PubMed  CAS  Google Scholar 

  211. Steinhauser I, Langer K, Strebhardt K, Spänkuch B (2008) Effect of trastuzumab-modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials 29:4022–4028

    PubMed  CAS  Google Scholar 

  212. Lupold S, Hicke B, Lin Y, Coffey D (2002) Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62:4029–4033

    PubMed  CAS  Google Scholar 

  213. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 105:17356–17361

    PubMed  CAS  Google Scholar 

  214. Patel LN, Zaro JL, Shen W-C (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24:1977–1992

    PubMed  CAS  Google Scholar 

  215. Torchilin VP (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558

    PubMed  CAS  Google Scholar 

  216. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    PubMed  CAS  Google Scholar 

  217. Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T (2005) Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. J Control Release 109:299–316

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Fattal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer US

About this chapter

Cite this chapter

Fattal, E., Hillaireau, H., Mura, S., Nicolas, J., Tsapis, N. (2012). Targeted Delivery Using Biodegradable Polymeric Nanoparticles. In: Siepmann, J., Siegel, R., Rathbone, M. (eds) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0881-9_10

Download citation

Publish with us

Policies and ethics