Skip to main content

Atomic Layer Deposition of Dielectrics on Graphene

  • Chapter
  • First Online:
Graphene Nanoelectronics

Abstract

Graphene, a monolayer of sp2 bonded carbon atoms, has recently attracted wide-spread attention because of its unique transport and physical properties that are appealing for a wide range of electronic applications. Integration with scalable high-κ dielectrics is important for the realization of graphene-based top-gated electronic devices including field effect transistors (FETs) and new logic device concepts. These gate dielectrics are expected to be thin (2–30 nm), with minimal trapped and mobile charges that otherwise would negatively affect device performance. In addition, the dielectrics are expected to enable operation at very high frequencies (including the THz range) needed for next generation radiofrequency applications, improve the channel mobility by screening charged impurities, and reduce the high leakage currents observed in traditional silicon dioxide (SiO2) gated devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5296): p. 666–669.

    Article  Google Scholar 

  2. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197–200.

    Article  Google Scholar 

  3. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183–191.

    Article  Google Scholar 

  4. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385–388.

    Article  Google Scholar 

  5. Jenkins, K.A., et al. Graphene RF transistor performance. in ECS Transactions. Vancouver, BC.

    Google Scholar 

  6. Lin, Y.M., et al., 100-GHz transistors from wafer-scale epitaxial graphene. Science. 327(5966): p. 662.

    Google Scholar 

  7. Farmer, D.B., et al., Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Letters, 2009. 9(12): p. 4474–4478.

    Article  Google Scholar 

  8. Moon, J.S., et al., Epitaxial-graphene RF field-effect transistors on Si-face 6 H-SiC substrates. IEEE Electron Device Letters, 2009. 30(6): p. 650–652.

    Article  Google Scholar 

  9. Konar, A., T.A. Fang, and D. Jena, Effect of high-kappa gate dielectrics on charge transport in graphene-based field effect transistors. Physical Review B, 2010. 82(11): p. 115452.

    Google Scholar 

  10. Liao, L. and X. Duan, Graphene-dielectric integration for graphene transistors. Materials Science and Engineering R: Reports. 70(3–6): p. 354–370.

    Google Scholar 

  11. Lu, Q., et al., Leakage current comparison between ultra-thin Ta2O5 films and conventional gate dielectrics. Ieee Electron Device Letters, 1998. 19(9): p. 341–342.

    Article  Google Scholar 

  12. Suntola, T., Atomic layer epitaxy. Material Science Reports|Material Science Reports, 1989. 4(7): p. 261–312.

    Article  Google Scholar 

  13. George, S.M., A.W. Ott, and J.W. Klaus, Surface chemistry for atomic layer growth. Journal of Physical Chemistry, 1996. 100(31): p. 13121–13131.

    Article  Google Scholar 

  14. Puurunen, R.L., Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 2005. 97(12): p. 1–52.

    Article  Google Scholar 

  15. Suntola, T. and J. Anston. 1977.

    Google Scholar 

  16. Suntola, T., Atomic Layer Epitaxy, in Handbook of Crystal Growth, D.T.J. Huerle, Editor. 1994, Elsevier: Amsterdam.

    Google Scholar 

  17. Seidel, T.E., Atomic Layer Deposition, in Handbook of Semiconductor Manufacturing Technology, R.D.a.Y. Nishi, Editor. 2008, CRC Press

    Google Scholar 

  18. Leskelä, M.R.a.M., in Handbook of Thin Film Materials, H.S. Nalwa, Editor. 2002, Academic Press: San Diego. p. 103–159.

    Google Scholar 

  19. Ritala, M., Atomic layer deposition. High-K Gate Dielectrics, 2004: p. 17–64.

    Google Scholar 

  20. Wang, X.R., S.M. Tabakman, and H.J. Dai, Atomic layer deposition of metal oxides on pristine and functionalized graphene. Journal of the American Chemical Society, 2008. 130(26): p. 8152–8153.

    Article  Google Scholar 

  21. Bongki, L., et al., Conformal Al/sub 2/O/sub 3/dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. Applied Physics Letters, 2008: p. 203102–1-3.

    Google Scholar 

  22. Speck, F., et al., Atomic layer deposited aluminum oxide films on graphite and graphene studied by XPS and AFM. Physica Status Solidi C: Current Topics in Solid State Physics, Vol 7, No 2, 2010. 7(2): p. 398–401.

    Google Scholar 

  23. Garces, N.Y., et al., Epitaxial Graphene Surface Preparation for Atomic Layer Deposition of Al 2 O 3 . Journal of Applied Physics, 2011. 109(12).

    Google Scholar 

  24. Xuan, Y., et al., Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Applied Physics Letters, 2008: p. 013101–1-3.

    Google Scholar 

  25. Pirkle, A., et al., The effect of graphite surface condition on the composition of Al 2 O3 by atomic layer deposition. Applied Physics Letters. 97(8).

    Google Scholar 

  26. Lee, B., et al., Atomic-Layer-Deposited Al2O3 as Gate Dielectrics for Graphene-Based Devices. ECS Transactions, 2009. 19(5): p. 225–230.

    Article  Google Scholar 

  27. Farmer, D.B. and R.G. Gordon, Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Letters, 2006. 6(4): p. 699–703.

    Article  Google Scholar 

  28. Lin, Y.M., et al., Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters, 2009. 9(1): p. 422–426.

    Article  Google Scholar 

  29. Pirkle, A., R.M. Wallace, and L. Colombo, In situ studies of Al2O3 and HfO2 dielectrics on graphite. Applied Physics Letters, 2009. 95(13).

    Google Scholar 

  30. Robinson, J.A., et al., Epitaxial Graphene Materials Integration: Effects of Dielectric Overlayers on Structural and Electronic Properties. Acs Nano, 2010. 4(5): p. 2667–2672.

    Article  Google Scholar 

  31. Dimitrakopoulos, C., et al., Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. Journal of Vacuum Science & Technology B, 2010. 28(5): p. 985–992.

    Article  MathSciNet  Google Scholar 

  32. Koehler, F.M., et al., Permanent pattern-resolved adjustment of the surface potential of graphene-like carbon through chemical functionalization. Angewandte Chemie - International Edition, 2009. 48(1): p. 224–227.

    Article  MathSciNet  Google Scholar 

  33. Yang, F.H. and R.T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes. Carbon, 2002. 40(3): p. 437-444.

    Article  Google Scholar 

  34. Zou, K., et al., Deposition of High-Quality HfO2 on Graphene and the Effect of Remote Oxide Phonon Scattering. Physical Review Letters, 2010. 105(12): p. -.

    Google Scholar 

  35. Robertson, J., High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics, 2006. 69(2): p. 327–396.

    Article  Google Scholar 

  36. Berger, C., et al., Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B, 2004. 108(52): p. 19912–19916.

    Article  Google Scholar 

  37. Emtsev, K.V., et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 2009. 8(3): p. 203–207.

    Article  Google Scholar 

  38. VanMil, B.L., et al., Graphene Formation on SiC Substrates. Silicon Carbide and Related Materials 2008, 2009. 615–617: p. 211–214.

    Google Scholar 

  39. Jernigan, G.G., V.D. Wheeler, and N.Y. Garces, Presented at the 58th AVS Meeting. Nashville, TN, Oct 30–Nov 4, 2011.

    Google Scholar 

  40. Lin, Y.M., et al., Operation of graphene transistors at giqahertz frequencies. Nano Letters, 2009. 9(1): p. 422–426.

    Article  Google Scholar 

  41. Williams, J.R., L. DiCarlo, and C.M. Marcus, Quantum hall effect in a gate-controlled p-n junction of graphene. Science, 2007. 317(5838): p. 638–641.

    Article  Google Scholar 

  42. Chen, J.H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008. 3(4): p. 206–209.

    Article  Google Scholar 

  43. Jackson, S.T. and R.G. Nuzzo, Determining Hybridization Differences for Amorphous-Carbon from the Xps C-1s Envelope. Applied Surface Science, 1995. 90(2): p. 195–203.

    Article  Google Scholar 

  44. Beamson, G., D.T. Clark, and D.S.L. Law, Electrical conductivity during XPS of heated PMMA: Detection of core line and valence band tacticity effects. Surface and Interface Analysis, 1999. 27(2): p. 76–86.

    Article  Google Scholar 

  45. Briggs, D. and G. Beamson, Primary and Secondary Oxygen-Induced C1s Binding-Energy Shifts in X-Ray Photoelectron-Spectroscopy of Polymers. Analytical Chemistry, 1992. 64(15): p. 1729–1736.

    Article  Google Scholar 

  46. Stone, P., et al., An STM, TPD and XPS investigation of formic acid adsorption on the oxygen-precovered c(6*2) surface of Cu(110). Surface Science, 1998. 418(1): p. 71–83.

    Article  Google Scholar 

  47. Renault, O., et al., Angle-resolved x-ray photoelectron spectroscopy of ultrathin Al2O3 films grown by atomic layer deposition. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2002. 20(6): p. 1867–1876.

    Article  Google Scholar 

  48. Alexander, M.R., G.E. Thompson, and G. Beamson, Characterization of the oxide/hydroxide surface of aluminium using x-ray photoelectron spectroscopy: a procedure for curve fitting the O 1s core level. Surface and Interface Analysis, 2000. 29(7): p. 468–477.

    Article  Google Scholar 

  49. Nair, R.R., et al., Fluorographene: A two-dimensional counterpart of Teflon. Small. 6(24): p. 2877–2884.

    Google Scholar 

  50. Kim, S., et al., Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Applied Physics Letters, 2009. 94(6).

    Google Scholar 

  51. Wilk, G.D., R.M. Wallace, and J.M. Anthony, High-kappa gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 2001. 89(10): p. 5243–5275.

    Article  Google Scholar 

  52. Mahapatra, R., et al., Leakage current and charge trapping behavior in TiO2/SiO2 high-kappa gate dielectric stack on 4 H-SIC substrate. Journal of Vacuum Science & Technology B, 2007. 25(1): p. 217–223.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L.O. Nyakiti, N. Nepal, R.L. Myers-Ward, J.K. Hite, G.G. Jernigan, and C.R. Eddy, Jr, for helpful discussions, and Dr. Eva Darian for providing Fig. 9.1(a). This work was supported by the Office of Naval Research. VDW is grateful for a postdoctoral fellowship from ASEE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Y. Garces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garces, N.Y., Wheeler, V.D., Gaskill, D.K. (2012). Atomic Layer Deposition of Dielectrics on Graphene. In: Murali, R. (eds) Graphene Nanoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0548-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0548-1_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0547-4

  • Online ISBN: 978-1-4614-0548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics