Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 2273 Accesses

Abstract

Chapter 8 studies the modeling and control of a flexible marine riser with the vessel dynamics. Both the dynamics of the vessel and the vibration of the riser are considered in the dynamic analysis, which make the system more difficult to control. Boundary control is proposed at the top boundary of the riser to suppress the riser’s vibration. Adaptive control is designed when the system parametric uncertainties exist. Employing the Lyapunov direct method, the states of the system are proven to be uniformly ultimately bounded. The state of the system will converge to a small neighborhood of zero by appropriately choosing the design parameters. The design is based on the PDEs of the system, thus avoiding some drawbacks associated with the traditional truncated-model-based design approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaewunruen S, Chiravatchradj J, Chucheepsakul S (2005) Nonlinear free vibrations of marine risers/pipes transport fluid. Ocean Eng 32(3–4):417–440

    Article  Google Scholar 

  2. How BVE, Ge SS, Choo YS (2009) Active control of flexible marine risers. J Sound Vib 320:758–776

    Article  Google Scholar 

  3. How BVE, Ge SS, Choo YS (2011) Control of coupled vessel, crane, cable, and payload dynamics for subsea installation operations. IEEE Trans Control Syst Technol 19(1):208–220

    Article  Google Scholar 

  4. Do K, Pan J (2008) Boundary control of transverse motion of marine risers with actuator dynamics. J Sound Vib 318(4–5):768–791

    Article  Google Scholar 

  5. Ge SS, He W, How BVE, Choo YS (2010) Boundary control of a coupled nonlinear flexible marine riser. IEEE Trans Control Syst Technol 18(5):1080–1091

    Article  Google Scholar 

  6. Balas MJ (1978) Feedback control of flexible systems. IEEE Trans Autom Control 23:673–679

    Article  MATH  Google Scholar 

  7. Vandegrift MW, Lewis FL, Zhu SQ (1994) Flexible-link robot arm control by a feedback linearization/singular perturbation approach. J Robot Syst 11(7):591–603

    Article  MATH  Google Scholar 

  8. Armaou A, Christofides P (2000) Wave suppression by nonlinear finite-dimensional control. Chem Eng Sci 55(14):2627–2640

    Article  Google Scholar 

  9. Christofides P, Armaou A (2000) Global stabilization of the Kuramoto–Sivashinsky equation via distributed output feedback control. Syst Control Lett 39(4):283–294

    Article  MathSciNet  MATH  Google Scholar 

  10. Sakawa Y, Matsuno F, Fukushima S (1985) Modeling and feedback control of a flexible arm. J Robot Syst 2(4):453–472

    Article  Google Scholar 

  11. Ge SS, Lee TH, Zhu G (1997) A nonlinear feedback controller for a single-link flexible manipulator based on a finite element model. J Robot Syst 14(3):165–178

    Article  MATH  Google Scholar 

  12. Ge SS, Lee TH, Zhu G (1998) Improving regulation of a single-link flexible manipulator with strain feedback. IEEE Trans Robot Autom 14(1):179–185

    Article  Google Scholar 

  13. Balas MJ (1978) Active control of flexible systems. J Optim Theory Appl 25:415–436

    Article  MathSciNet  MATH  Google Scholar 

  14. Meirovitch L, Baruh H (1983) On the problem of observation spillover in self-adjoint distributed systems. J Optim Theory Appl 30(2):269–291

    Article  MathSciNet  Google Scholar 

  15. Ge SS, Lee TH, Zhu G, Hong F (2001) Variable structure control of a distributed parameter flexible beam. J Robot Syst 18:17–27

    Article  MATH  Google Scholar 

  16. Zhu G, Ge SS (1998) A quasi-tracking approach for finite-time control of a mass-beam system. Automatica 34(7):881–888

    Article  MathSciNet  MATH  Google Scholar 

  17. Ge SS, Lee TH, Zhu G (1996) Energy-based robust controller design for multi-link flexible robots. Mechatronics 6(7):779–798

    Article  Google Scholar 

  18. Lee TH, Ge SS, Wang Z (2001) Adaptive robust controller design for multi-link flexible robots. Mechatronics 11(8):951–967

    Article  Google Scholar 

  19. Ge SS, Lee TH, Wang Z (2001) Model-free regulation of multi-link smart materials robots. IEEE/ASME Trans Mechatron 6(3):346–351

    Article  Google Scholar 

  20. Yang K-J, Hong K-S, Matsuno F (2004) Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vib 273(4–5):1007–1029

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen QC, Hong K-S (2010) Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J Sound Vib 329(22):4588–4603

    Article  Google Scholar 

  22. Rahn CD (2001) Mechatronic control of distributed noise and vibration. Springer, New York

    Book  MATH  Google Scholar 

  23. Morgul O (1992) Dynamic boundary control of a Euler–Bernoulli beam. IEEE Trans Autom Control 37(5):639–642

    Article  MathSciNet  Google Scholar 

  24. Geniele H, Patel R, Khorasani K (1997) End-point control of a flexible-link manipulator: theory and experiments. IEEE Trans Control Syst Technol 5(6):556–570

    Article  Google Scholar 

  25. Qu Z (2001) Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans Autom Control 46(3):470–476

    Article  MATH  Google Scholar 

  26. Rahn C, Zhang F, Joshi S, Dawson D (1999) Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J Dyn Syst Meas Control 121:563–565

    Article  Google Scholar 

  27. Fung RF, Tseng CC (1999) Boundary control of an axially moving string via Lyapunov method. J Dyn Syst Meas Control 121:105–110

    Article  Google Scholar 

  28. Fard M, Sagatun S (2001) Exponential stabilization of a transversely vibrating beam by boundary control via Lyapunov’s direct method. J Dyn Syst Meas Control 123:195–200

    Article  Google Scholar 

  29. Yang K-J, Hong K-S, Matsuno F (2005) Robust boundary control of an axially moving string by using a PR transfer function. IEEE Trans Autom Control 50(12):2053–2058

    Article  MathSciNet  Google Scholar 

  30. Yang K-J, Hong K-S, Matsuno F (2005) Energy-based control of axially translating beams: varying tension, varying speed, and disturbance adaptation. IEEE Trans Control Syst Technol 13(6):1045–1054

    Article  Google Scholar 

  31. Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: a course on backstepping designs. SIAM, Philadelphia

    Book  Google Scholar 

  32. Li T, Hou Z, Li J (2008) Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback. Automatica 44(2):498–503

    Article  MathSciNet  Google Scholar 

  33. Endo K, Matsuno F, Kawasaki H (2009) Simple boundary cooperative control of two one-link flexible arms for grasping. IEEE Trans Autom Control 54(10):2470–2476

    Article  MathSciNet  Google Scholar 

  34. Baz A (1997) Dynamic boundary control of beams using active constrained layer damping. Mech Syst Signal Process 11(6):811–825

    Article  MathSciNet  Google Scholar 

  35. Smyshlyaev A, Guo B, Krstic M (2009) Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback. IEEE Trans Autom Control 54(5):1135

    Article  MathSciNet  Google Scholar 

  36. Nguyen TD (2008) Second-order observers for second-order distributed parameter systems in R 2. Syst Control Lett 57(10):787–795

    Article  MATH  Google Scholar 

  37. Nguyen TD (2009) Boundary output feedback of second-order distributed parameter systems. Syst Control Lett 58(7):519–528

    Article  MATH  Google Scholar 

  38. Wanderley J, Levi C (2005) Vortex induced loads on marine risers. Ocean Eng 32(11–12):1281–1295

    Article  Google Scholar 

  39. Blevins R (1977) Flow-induced vibration. Van Nostrand Reinhold, New York

    MATH  Google Scholar 

  40. Chakrabarti SK, Frampton RE (1982) Review of riser analysis techniques. Appl Ocean Res 4:73–90

    Article  Google Scholar 

  41. Yamamoto C, Meneghini J, Saltara F, Fregonesi R, Ferrari J (2004) Numerical simulations of vortex-induced vibration on flexible cylinders. J Fluids Struct 19(4):467–489

    Article  Google Scholar 

  42. Meneghini J, Saltara F, Fregonesi R, Yamamoto C, Casaprima E, Ferrari J (2004) Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields. Eur J Mech B, Fluids 23(1):51–63

    Article  MATH  Google Scholar 

  43. Queiroz MS, Dawson DM, Nagarkatti SP, Zhang F (2000) Lyapunov based control of mechanical systems. Birkhauser, Boston

    Book  MATH  Google Scholar 

  44. Karafyllis I, Christofides P, Daoutidis P (1999) Dynamics of a reaction-diffusion system with brusselator kinetics under feedback control. Phys Rev B 59:372–380

    Article  Google Scholar 

  45. Nguyen T, Egeland O (2008) Infinite dimensional observer for a flexible robot arm with a tip load. Asian J Control 10(4):456–461

    Article  MathSciNet  Google Scholar 

  46. Demetriou M, Fahroo F (2006) Model reference adaptive control of structurally perturbed second-order distributed parameter systems. Int J Robust Nonlinear Control 16(16):773–799

    Article  MathSciNet  MATH  Google Scholar 

  47. Demetriou M (2004) Natural second-order observers for second-order distributed parameter systems. Syst Control Lett 51(3–4):225–234

    Article  MathSciNet  MATH  Google Scholar 

  48. Smyshlyaev A, Krstic M (2005) Backstepping observers for a class of parabolic PDEs. Syst Control Lett 54(7):613–625

    Article  MathSciNet  MATH  Google Scholar 

  49. Bounit H, Hammouri H (1997) Observers for infinite dimensional bilinear systems. Eur J Control 3(4):325–339

    Article  MATH  Google Scholar 

  50. Balas M (1999) Do all linear flexible structures have convergent second-order observers? J Guid Control Dyn 22(6):905–908

    Article  Google Scholar 

  51. Xu C, Deguenon J, Sallet G (2006) Infinite dimensional observers for vibrating systems. In: Proceedings of the 45th IEEE conference on decision and control, pp 3979–3983

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

He, W., Ge, S.S., How, B.V.E., Choo, Y.S. (2014). Flexible Marine Riser with Vessel Dynamics. In: Dynamics and Control of Mechanical Systems in Offshore Engineering. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-5337-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5337-5_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5336-8

  • Online ISBN: 978-1-4471-5337-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics