Skip to main content

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Online learning has shown to be successful in tracking-by-detection of previously unknown objects. However, most approaches are limited to a bounding box representation with fixed aspect ratio and cannot handle highly non-rigid and articulated objects. Moreover, they provide only a limited foreground/background separation, which in turn, increases the amount of noise introduced during online self-training. To overcome this limitation, we present a tracking-by-detection approach based on the generalized Hough transform. We extend the idea of Hough forests (Chap. 11) to the online domain, and couple the voting-based detection and back-projection with a rough GrabCut segmentation (Rother et al. in ACM Trans. Graph. 23(3), 2004). This significantly reduces the amount of noisy training samples during online learning and thus effectively prevents the tracker from drifting. To show these benefits, we demonstrate our method for tracking a variety of previously unknown objects, even under heavy non-rigid transformations, partial occlusions, scale changes and rotations. Moreover, we compare our tracker to state-of-the-art methods including both bounding box-based and part-based trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implementation from http://opencv.willowgarage.com.

  2. 2.

    http://lrs.icg.tugraz.at/research/houghtrack/.

References

  1. Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11)

    Google Scholar 

  2. Avidan S (2005) Ensemble tracking. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  3. Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  4. Ballard DH (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit 13(2)

    Google Scholar 

  5. Bibby C, Reid I (2008) Robust real-time visual tracking using pixel-wise posteriors. In: Proc European conf on computer vision (ECCV). Springer, Berlin

    Google Scholar 

  6. Breiman L (2001) Random forests. Mach Learn 45(1)

    Google Scholar 

  7. Cehovin L, Kristan M, Leonardis A (2011) An adaptive coupled-layer visual model for robust visual tracking. In: Proc IEEE intl conf on computer vision (ICCV)

    Google Scholar 

  8. Cremers D, Funka-Lea G (2006) Dynamical statistical shape priors for level set based tracking. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  9. Fan J, Shen X, Wu Y (2010) Closed-loop adaptation for robust tracking. In: Proc European conf on computer vision (ECCV). Springer, Berlin

    Google Scholar 

  10. Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part based models. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  11. Gall J, Lempitsky V (2009) Class-specific Hough forests for object detection. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  12. Gall J, Razavi N, van Gool L (2010) On-line adaption of class-specific codebooks for instance tracking. In: Proc British machine vision conference (BMVC)

    Google Scholar 

  13. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 36(1)

    Google Scholar 

  14. Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: Proc British machine vision conference (BMVC)

    Google Scholar 

  15. Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: Proc European conf on computer vision (ECCV). Springer, Berlin

    Google Scholar 

  16. Grossberg S (1987) Competitive learning: from interactive activation to adaptive resonance. Cogn Sci

    Google Scholar 

  17. Grundmann M, Kwatra V, Han M, Essa I (2010) Efficient hierarchical graph based video segmentation. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  18. Javed O, Ali S, Shah M (2005) Online detection and classification of moving objects using progressively improving detectors. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  19. Kalal Z, Matas J, Mikolajczyk K (2010) P-N learning: bootstrapping binary classifiers by structural constraints. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  20. Kim TK, Stenger B, Woodley T, Cipolla R (2010) Online multiple classifier boosting for object tracking. In: Online learning for computer vision workshop

    Google Scholar 

  21. Kwon JS, Lee KM (2009) Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  22. Leibe B, Leonardis A, Schiele B (2004) Combined object categorization and segmentation with an implicit shape model. In: ECCV’04 workshop on statistical learning in computer vision, May 2004

    Google Scholar 

  23. Maji S, Malik J (2009) Object detection using a max-margin Hough transform. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  24. Marée R, Geurts P, Piater J, Wehenkel L (2005) Random subwindows for robust image classification. In: Proc IEEE conf computer vision and pattern recognition (CVPR), vol 1. IEEE, New York

    Google Scholar 

  25. Matthews L, Ishikawa T, Baker S (2004) The template update problem. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  26. Moreno-Noguer F, Sanfeliu A, Samaras D (2008) Dependent multiple cue integration for robust tracking. IEEE Trans Pattern Anal Mach Intell

    Google Scholar 

  27. Nejhum SM, Ho J, Yang M-H (2008) Visual tracking with histograms and articulating blocks. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  28. Okada R (2009) Discriminative generalized Hough transform for object detection. In: Proc IEEE intl conf on computer vision (ICCV)

    Google Scholar 

  29. Ozuysal M, Calonder M, Lepetit V, Fua P (2010) Fast keypoint recognition using random ferns. IEEE Trans Pattern Anal Mach Intell 32(3)

    Google Scholar 

  30. Razavi N, Gall J, Van Gool L (2010) Backprojection revisited: scalable multi-view object detection and similarity metrics for detections. In: Proc European conf on computer vision (ECCV). Springer, Berlin

    Google Scholar 

  31. Ren X, Malik J (2007) Tracking as repeated figure/ground segmentation. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  32. Rother C, Kolmogorov V, Blake A (2004) GrabCut—interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23(3)

    Google Scholar 

  33. Saffari A, Leistner C, Santner J, Godec M, Bischoff H (2009) On-line random forests. In: ICCV workshop on on-line learning for computer vision

    Google Scholar 

  34. Santner J, Leistner C, Saffari A, Pock T, Bischof H (2010) PROST: parallel robust online simple tracking. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  35. Schulter S, Leistner C, Roth PM, van Gool L, Bischof H (2011) On-line Hough forests. In: Proc British machine vision conference (BMVC)

    Google Scholar 

  36. Tsai D, Flagg M, Rehg JM (2010) Motion coherent tracking with multi-label MRF optimization. In: Proc British machine vision conference (BMVC)

    Google Scholar 

  37. Villamizar M, Moreno-Noguer F, Andrade-Cetto J, Sanfeliu A (2010) Efficient rotation invariant object detection using boosted random ferns. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  38. Viola P, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features. In: Proc IEEE conf computer vision and pattern recognition (CVPR), December 2001, vol 1

    Google Scholar 

  39. Yao A, Gall J, van Gool L (2010) A Hough transform-based voting framework for action recognition. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

  40. Yin Z, Collins R (2009) Shape constrained figure-ground segmentation and tracking. In: Proc IEEE conf computer vision and pattern recognition (CVPR)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Austrian Research Promotion Agency (FFG) projects MobiTrick (8258408) in the FIT-IT program and SHARE (831717) in the IV2Splus program, and by the Austrian Science Foundation (FWF) project Advanced Learning for Tracking and Detection in Medical Workflow Analysis (I535-N23).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Godec, M., Roth, P.M., Bischof, H. (2013). Hough-Based Tracking of Deformable Objects. In: Criminisi, A., Shotton, J. (eds) Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-4929-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4929-3_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4928-6

  • Online ISBN: 978-1-4471-4929-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics