Skip to main content

Linear Quadtrees for Neural Network Based Position Invariant Pattern Recognition

  • Conference paper
Neural Network Applications

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

  • 194 Accesses

Abstract

In the present paper a new method is proposed which involves teaching an Artificial Neural Network with a hierarchical data structure. This method results in a recognition process that significantly reduces the duration of a training process that is generally time consuming. The proposed method uses an invariant Octree data structure to describe the volume of a three dimensional object. The object is thus transformed in such a way that it is independent of rotation, translation and scaling and provides a significant storage capacity compression rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Rosenfeld, “ Quadtrees and Pyramids for pattern recognition and image processing”, Proc. 5th Int. Conf. on Pattern Recognition, Miami Beach, 1–4 Dec 1980, 802–811.

    Google Scholar 

  2. G.M. Hunter, “Linear transformation of pictures represented by Quadtree”, Comput. Graphics Image Processing, vol 10, no 3, July 1979, 289–296.

    Article  Google Scholar 

  3. M. Imme, “A new method for edge detection”, IEE 3rd Int. Conf. on Image processing and its applications, Number 307, University of Warwick, U.K., 18–20 July 1989, 656–659.

    Google Scholar 

  4. A. Klinger, “Pattern and search statistics”, Optimised Methods in Statistics, J.S. Ustagi,ed., Academic Press, New York 1971.

    Google Scholar 

  5. H. Samet, “Connected component labelling using quadtrees”, J. ACM., vol 28, no 3, 1981, 487–501.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Klinger, M. L. Rhodes, “Organization and access of image data by areas”, IEEE PAMI-1, 1979, 50–60.

    Google Scholar 

  7. G.M. Hunter, K. Steiglitz, “Operations on images using Quadtrees”, IEEE PAMI-1, 1979, 145–153.

    Google Scholar 

  8. H. Samet, “Region representation: Quadtrees from binary arrays”, Comp. Graph. Image Proc., vol 13, 1980, 88–93.

    Article  Google Scholar 

  9. H. Samet, “An algorithm to convert rasters to quadorees”, IRRF. PAMI-3, 1981, 93–95.

    Google Scholar 

  10. H. Samet, “Neighbour finding in Quadtrees”, Proc. PRIP-81, Dallas, Aug. 3–5 1981, 68–74.

    Google Scholar 

  11. C. R. Dyer, A. Rosenfeld, H. Samet, “Region representation: boundary codes from quadtrees”, Comm. Ass. Comput. Mach. 23, 1980, 171–179.

    MATH  Google Scholar 

  12. M. Shneier, “Path length distances for Quadtrees”, Inf. Sci. 23, 1981, 45–67.

    Article  MathSciNet  Google Scholar 

  13. L. Jones, S.S. Iyengar, “Representation of a region by a forest of quadtrees”, MEF. PRIP-81 Conf., Dallas, 1981, 57–59.

    Google Scholar 

  14. J. R. Woodwark, “The explicit quadtree as a structure for Computer Graphics”, Comput. J., vol 25, no 2, 1982, 235–238.

    Article  Google Scholar 

  15. L Gargantini, “An effective way to represent quadtrees”, Comm. ACM, vol 25, no 12, 1983, 905–910.

    Article  Google Scholar 

  16. M.A. Oliver, N.E. Wiseman, “Operations on quadtree encoded images”, Compt. J., vol 26, no 1, 1983, 83–91.

    Article  Google Scholar 

  17. G. M. Morton, “A computer oriented geodetic data base and a new technique in file sequencing”, IBM Canada, 1966.

    Google Scholar 

  18. M. Tamminen, “Encoding pixel trees”, Comput. Vision Graph. and Image Proc., vol 28, no 1, 1984, 4457.

    Google Scholar 

  19. L Gargantini, “An effective way to store quadtrees”, Comm. Ass. Comput. Mach. 25, 1982, 905–910.

    MATH  Google Scholar 

  20. A. Klinger, C.R. Dyer, “Experiments on picture representation using regular decomposition”, Comp. graph. Image Proc., Vol 5, 1976, 68–105.

    Article  Google Scholar 

  21. S. Tanimoto, T. Pavlidis, “A hierarchical data structure for picture processing”, Comput. Graphics and Image Processing, vol 4, 1975, 104–119.

    Article  Google Scholar 

  22. M. Li, W.L Grosky, R. Jain, “Normalised Quadtrees with respect to translations”, Proc. PRIP-81, Dallas, Texas, Aug. 3–51981, 60–62.

    Google Scholar 

  23. C.H. Chien, J.K. Aggarwal, “Volume/Surface Octrees for the representation of three dimensional Objects”, Comp. Graphics Image Proc., Vol 36, 1986, 100–113.

    Article  Google Scholar 

  24. C.H. Chien, J.K. Aggarwal, “Normalised Quadtree Representation”, Comp. Vis. Graphics Image Proc., vol 26, 1984, 331–346.

    Article  Google Scholar 

  25. M.M. Yau, S.N. Srihari, “A hierarchical data structure for multidimensional digital images”, Comm. ACM, vol 26, no7, 1983, 504–515.

    Google Scholar 

  26. S.N. Srihari, “Representations of 3D digital images”, Comput. Surveys 13, 1981, 394–424.

    Article  Google Scholar 

  27. C.L. Jackins, S.L. Tan imoto, “Quadtrees, Octrees, and K-trees: A generalised approach to recursive decomposition of euclidean space”, IEEE PAMI-5, no 5, 1983, 533–539.

    Article  Google Scholar 

  28. L Calborn, L Charkrarartn, Vanderschel, “A hierarchical data structure for representing the spatial decomposition of 3D objects”, IEEE Comp. Graphics Appl. 5, no 4, 1985, 24–31.

    Article  Google Scholar 

  29. D. J. Abel, J. L. Smith, “A data structure and algorithm based on linear key for rectangular retrieval problems”, Comput. Vision Graphics and Image Proc., vol 24, 1983, 1–13.

    Article  Google Scholar 

  30. C.I. Conolly, “Cumulative generation of Octree models from range data”, Proc. Int. Conf. Robotics, Atlanta, March 13–15, 1984, 25–32.

    Google Scholar 

  31. C. H. Chien, J. K. Aggarwal, “Identification of 3D objects from multiple silhouettes using Quadtrees/Octrees”, Comput. Vision Graphics and Image Proc. 36, 1986, 256–273.

    Article  Google Scholar 

  32. J. Veestra, N. Ahuja, “Efficient Octree generation from silhouettes”, Proc. IEEE Comp. Soc. Conf. on Comp. Vision and Pattern Recognition, Miami Beach, June 22–26, 1986, 537–542.

    Google Scholar 

  33. C.H. Chien, J.K. Aggarwal, “Computation of Volume./Surface Octrees from Contours and Silhouettes of Multiple Views”, Proceedings CVPR’86, IFFF. Computer Society, Jun. 1986, 250–255.

    Google Scholar 

  34. A.A.G. Requicha, “Representations for rigid solids: Theory, methods, and systems”, Comp. Surveys, vol 12, no 4, 1980, 437–464.

    Article  Google Scholar 

  35. J. Austin, T.J. Stonham, “An associative memory for use in image recognition and occlusion analysis”, Vision and Image Computing, Vol 5, no 4, Nov. 1987, 251–261.

    Article  Google Scholar 

  36. J. Austin, “ADAM: An Associative neural architecture for invariant pattern classification”, lEE Conference on Artificial Neural Networks, lEE Conf. Publication 313, London 1989, 196–200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag London Limited

About this paper

Cite this paper

Mertzanis, E.C., Austin, J. (1992). Linear Quadtrees for Neural Network Based Position Invariant Pattern Recognition. In: Taylor, J.G. (eds) Neural Network Applications. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2003-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2003-2_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19772-0

  • Online ISBN: 978-1-4471-2003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics