Skip to main content

Known Clinical Epigenetic Disorders with an Obesity Phenotype: Prader–Willi Syndrome and the GNAS Locus

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

  • 1315 Accesses

Abstract

Prader–Willi syndrome (PWS) was the first example in humans of genomic imprinting, an epigenetic phenomenon mediated through modifications of DNA and histones by methylation without altering the DNA sequence. Epigenetics is heritable but reversible depending on the parent of origin. PWS is a neurodevelopmental disorder characterized by hypotonia, feeding difficulties, hypogonadism, growth failure, learning/behavioral problems, and hyperphagia in early childhood leading to morbid obesity if uncontrolled. PWS is considered the most common known cause of life-threatening obesity and estimated to occur in 1 in 10,000–20,000 individuals. A de novo paternal deletion of the chromosome 15q11–q13 region is the cause in 70% of PWS subjects, maternal disomy 15 accounts for about 25%, and the remaining cases are due to an imprinting defect (microdeletions or epimutations) of the imprinting center or from chromosome 15 translocations. Predisposition of adipogenesis and obesity is present before birth and controlled by epigenetics in PWS and other obesity-related disorders. Specific information about clinical epigenetic disorders with obesity will be discussed, including PWS, along with epigenetic defects involving the complex GNAS gene locus on chromosome 20 causing Albright hereditary osteodystrophy (pseudohypoparathyroidism – PHP and pseudopseudohypoparathyroidism – PPHP) in which obesity is a major manifestation, and McCune–Albright syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Butler MG. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet. 1990; 35(3):319–32.

    Article  PubMed  CAS  Google Scholar 

  2. Butler MG, Lee PDK, Whitman BY. Management of Prader-Willi syndrome. 3rd ed. In: Butler MG, Lee PDK, Whitman BY, editors. New York, NY: Springer; 2006. pp. 1–550.

    Chapter  Google Scholar 

  3. Cassidy SB, Driscoll DJ. Prader-Willi syndrome. Eur J Hum Genet. 2009; 17(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  4. Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med. 2005; 7(14):1–20.

    Article  PubMed  Google Scholar 

  5. Cattanach BM, Beechey CV, Peters J. Interactions between imprinting effects: summary and review. Cytogenet Genome Res. 2006; 113(1–4):17–23.

    Article  PubMed  CAS  Google Scholar 

  6. Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. Bioessays. 2006; 28(5):453–9.

    Article  PubMed  CAS  Google Scholar 

  7. Zakharova IS, Shevchenko AI, Zakian SM. Monoallelic gene expression in mammals. Chromosoma. 2009; 118(3):279–90.

    Article  PubMed  CAS  Google Scholar 

  8. Murphy SK, Jirtle RL. Imprinting evolution and the price of silence. Bioessays. 2003; 25(6):577–88.

    Article  PubMed  CAS  Google Scholar 

  9. Butler MG. Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet. 2009; 26(9–10):477–86.

    Article  PubMed  Google Scholar 

  10. Prader A, Labhart A, Willi H. Ein syndrome von adipositas, kleinwuchs, kryptorchismus and oligophrenie nach myatonieartigem zustand im neugeborenenalter. Schweizerische Medzinische Wochenschrift. 1956; 86:1260–1.

    Google Scholar 

  11. Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981; 304(6):325–29.

    Article  PubMed  CAS  Google Scholar 

  12. Butler MG, Palmer CG. Parental origin of chromosome 15 deletion in Prader-Willi syndrome. Lancet. 1983; 1(8336):1285–6.

    Article  PubMed  CAS  Google Scholar 

  13. Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989; 342(6247):281–5.

    Article  PubMed  CAS  Google Scholar 

  14. Cassidy SB, Lai LW, Erickson RP, et al. Trisomy 15 with loss of the paternal 15 as a cause of Prader-Willi syndrome due to maternal disomy. Am J Hum Genet. 1992; 51(4):701–8.

    PubMed  CAS  Google Scholar 

  15. Christian SL, Smith AC, Macha M, et al. Prenatal diagnosis of uniparental disomy 15 following trisomy 15 mosaicism. Prenat Diagn. 1996; 16(4):323–32.

    Article  PubMed  CAS  Google Scholar 

  16. Butler MG, Sturich J, Myers SE, Gold JA, Kimonis V, Driscoll DJ. Is gestation in Prader-Willi syndrome affected by the genetic subtype? J Assist Reprod Genet. 2009; 26(8):461–6.

    Article  PubMed  Google Scholar 

  17. Viville S, Surani MA. Towards unravelling the Igf2/H19 imprinted domain. Bioessays. 1995; 17(10):835–8.

    Article  PubMed  CAS  Google Scholar 

  18. Eggermann T. Silver-Russell and Beckwith-Wiedemann syndromes: opposite (epi) mutations in 11p15 result in opposite clinical pictures. Horm Res. 2009; 71 Suppl 2 :30–5.

    Article  PubMed  CAS  Google Scholar 

  19. Lau AW, Brown CJ, Penaherrera M, Langlois S, Kalousek DK, Robinson WP. Skewed X-chromosome inactivation is common in fetuses or newborns associated with confined placental mosaicism. Am J Hum Genet. 1997; 61(6):1353–61.

    Article  PubMed  CAS  Google Scholar 

  20. Butler MG, Theodoro MF, Bittel DC, Kuipers PJ, Driscoll DJ, Talebizadeh Z. X-chromosome inactivation patterns in females with Prader-Willi syndrome. Am J Med Genet A. 2007; 143(5):469–75.

    PubMed  Google Scholar 

  21. Krepischi AC, Kok F, Otto PG. X chromosome-inactivation patterns in patients with Rett syndrome. Hum Genet. 1998; 102(3):319–21.

    Article  PubMed  CAS  Google Scholar 

  22. Ledbetter DH, Zachary JM, Simpson JL, et al. Cytogenetic results from the U.S. Collaborative Study on CVS. Prenat Diagn. 1992; 12(5):317–45.

    Article  PubMed  CAS  Google Scholar 

  23. Verdine BN, Troseth GL, Hodapp RM, Dykens EM. Strategies and correlates of jigsaw puzzle and visuospatial performance by persons with Prader-Willi syndrome. Am J Ment Retard. 2008; 113(5):343–55.

    Article  PubMed  Google Scholar 

  24. Butler MG, Thompson T. Prader-Willi syndrome: clinical and genetics findings. Endocrinologist. 2000; 10:3S–16S.

    Article  Google Scholar 

  25. Butler MG, Fischer W, Kibiryeva N, Bittel DC. Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am J Med Genet A. 2008; 146(7):854–60.

    PubMed  Google Scholar 

  26. Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet. 2001; 2:153–75.

    Article  PubMed  CAS  Google Scholar 

  27. Miller NL, Wevrick R, Mellon PL. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet. 2009; 18(2):248–60.

    Article  PubMed  CAS  Google Scholar 

  28. Mercer RE, Wevrick R. Loss of magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice. PLoS One. 2009; 4(1):e4291.

    Article  PubMed  Google Scholar 

  29. Kozlov SV, Bogenpohl JW, Howell MP, et al. The imprinted gene Magel2 regulates normal circadian output. Nat Genet. 2007; 39(10):1266–72.

    Article  PubMed  CAS  Google Scholar 

  30. Gray TA, Hernandez L, Carey AH, et al. The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. Genomics. 2000; 66(1):76–86.

    Article  PubMed  CAS  Google Scholar 

  31. Buiting K, Nazlican H, Galetzka D, Wawrzik M, Gross S, Horsthemke B. C15orf2 and a novel noncoding transcript from the Prader-Willi/Angelman syndrome region show monoallelic expression in fetal brain. Genomics. 2007; 89(5):588–95.

    Article  PubMed  CAS  Google Scholar 

  32. Ding F, Li HH, Zhang S, et al. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One. 2008; 3(3):e1709.

    Article  PubMed  Google Scholar 

  33. Bittel DC, Kibiryeva N, Talebizadeh Z, Butler MG. Microarray analysis of gene/transcript expression in Prader-Willi syndrome: deletion versus UPD. J Med Genet. 2003; 40(8):568–74.

    Article  PubMed  CAS  Google Scholar 

  34. Bittel DC, Kibiryeva N, Talebizadeh Z, Driscoll DJ, Butler MG. Microarray analysis of gene/transcript expression in Angelman syndrome: deletion versus UPD. Genomics. 2005; 85(1):85–91.

    Article  PubMed  CAS  Google Scholar 

  35. Ebert MH, Schmidt DE, Thompson T, Butler MG. Elevated plasma gamma-aminobutyric acid (GABA) levels in individuals with either Prader-Willi syndrome or Angelman syndrome. J Neuropsychiatry Clin Neurosci. Winter 1997; 9(1):75–80.

    PubMed  CAS  Google Scholar 

  36. Ji Y, Rebert NA, Joslin JM, Higgins MJ, Schultz RA, Nicholls RD. Structure of the highly conserved HERC2 gene and of multiple partially duplicated paralogs in human. Genome Res. March 2000; 10(3):319–29.

    Article  PubMed  CAS  Google Scholar 

  37. Chai JH, Locke DP, Greally JM, et al. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet. 2003; 73(4):898–925.

    Article  PubMed  CAS  Google Scholar 

  38. Butler MG, Jenkins BB. Analysis of chromosome breakage in the Prader-Labhart-Willi syndrome. Am J Med Genet. 1989; 32(4):514–9.

    Article  PubMed  CAS  Google Scholar 

  39. Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics. 2004; 113(3 Pt 1):565–73.

    Article  PubMed  Google Scholar 

  40. Bittel DC, Kibiryeva N, Butler MG. Expression of 4 genes between chromosome 15 breakpoints 1 and 2 and behavioral outcomes in Prader-Willi syndrome. Pediatrics. 2006; 118(4):e1276–e83.

    Article  PubMed  Google Scholar 

  41. Roof E, Stone W, MacLean W, Feurer ID, Thompson T, Butler MG. Intellectual characteristics of Prader-Willi syndrome: comparison of genetic subtypes. J Intellect Disabil Res. 2000; 44(Pt 1):25–30.

    Article  PubMed  Google Scholar 

  42. Zarcone J, Napolitano D, Peterson C, et al. The relationship between compulsive behaviour and academic achievement across the three genetic subtypes of Prader-Willi syndrome. J Intellect Disabil Res. 2007; 51(Pt. 6):478–87.

    Article  PubMed  CAS  Google Scholar 

  43. Kanber D, Giltay J, Wieczorek D, et al. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader-Willi syndrome. Eur J Hum Genet. 2009; 17(5):582–90.

    Article  PubMed  CAS  Google Scholar 

  44. Sahoo T, del Gaudio D, German JR, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008; 40(6):719–21.

    Article  PubMed  CAS  Google Scholar 

  45. Smith AJ, Purmann C, Walters RG, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet. 2009; 18(17):3257–65.

    Article  PubMed  Google Scholar 

  46. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science. 2006; 311(5758):230–2.

    Article  PubMed  CAS  Google Scholar 

  47. Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG. Whole genome microarray analysis of gene expression in Prader-Willi syndrome. Am J Med Genet A. 2007; 143(5):430–42.

    PubMed  Google Scholar 

  48. Hall BD, Smith DW, Prader-Willi S. A resumé of 32 cases including an instance of affected first cousins, one of whom is of normal stature and intelligence. J Pediatr. 1972; 81(2):286–93.

    Article  PubMed  CAS  Google Scholar 

  49. Bray GA, Dahms WT, Swerdloff RS, Fiser RH, Atkinson RL, Carrel RE. The Prader-Willi syndrome: a study of 40 patients and a review of the literature. Medicine (Baltimore). 1983; 62(2):59–80.

    CAS  Google Scholar 

  50. Cassidy SB. Prader-Willi syndrome. Curr Probl Pediatr. 1984; 14(1):1–55.

    PubMed  CAS  Google Scholar 

  51. Butler MG, Meaney FJ, Palmer CG. Clinical and cytogenetic survey of 39 individuals with Prader-Labhart-Willi syndrome. Am J Med Genet. 1986; 23(3):793–809.

    Article  PubMed  CAS  Google Scholar 

  52. Butler MG. Prader-Willi syndrome: an example of genomic imprinting. In: Butler MG, Meaney FJ editors. Genetics of developmental disabilities. 1st ed. Boca Raton, FL: Taylor & Francis; 2005. pp. 279–318.

    Google Scholar 

  53. Hirsch HJ, Eldar-Geva T, Benarroch F, Rubinstein O, Gross-Tsur V. Primary testicular dysfunction is a major contributor to abnormal pubertal development in males with Prader-Willi syndrome. J Clin Endocrinol Metab. July 2009; 94(7):2262–8.

    Article  PubMed  CAS  Google Scholar 

  54. Eldar-Geva T, Hirsch HJ, Rabinowitz R, Benarroch F, Rubinstein O, Gross-Tsur V. Primary ovarian dysfunction contributes to the hypogonadism in women with Prader-Willi syndrome. Horm Res. 2009; 72(3):153–9.

    Article  PubMed  CAS  Google Scholar 

  55. Stevenson DA, Heinemann J, Angulo M, et al. Gastric rupture and necrosis in Prader-Willi syndrome. J Pediatr Gastroenterol Nutr. 2007; 45(2):272–4.

    Article  PubMed  Google Scholar 

  56. Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega AC, Tauber M. Recommendations for the diagnosis and management of Prader-Willi syndrome. J Clin Endocrinol Metab. Nov 2008; 93(11):4183–97.

    Article  PubMed  CAS  Google Scholar 

  57. Meaney FJ, Butler MG. The developing role of anthropologists in medical genetics: anthropometric assessment of the Prader-Labhart-Willi syndrome as an illustration. Med Anthropol. 1989; 10(4):247–53.

    Article  PubMed  CAS  Google Scholar 

  58. Meaney FJ, Butler MG. Characterization in obesity in the Prader-Labhart-Willi syndrome: fatness patterning. Med Anthropol Q. 1989; 3:294–305.

    Article  Google Scholar 

  59. Talebizadeh Z, Butler MG. Insulin resistance and obesity-related factors in Prader-Willi syndrome: comparison with obese subjects. Clin Genet. 2005; 67(3):230–9.

    Article  PubMed  CAS  Google Scholar 

  60. Goldstone AP, Thomas EL, Brynes AE, et al. Visceral adipose tissue and metabolic complications of obesity are reduced in Prader-Willi syndrome female adults: evidence for novel influences on body fat distribution. J Clin Endocrinol Metab. 2001; 86(9):4330–8.

    Article  PubMed  CAS  Google Scholar 

  61. Theodoro MF, Talebizadeh Z, Butler MG. Body composition and fatness patterns in Prader-Willi syndrome: comparison with simple obesity. Obesity (Silver Spring). 2006; 14(10):1685–90.

    Article  Google Scholar 

  62. Cummings DE, Clement K, Purnell JQ, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med. 2002; 8(7):643–4.

    Article  PubMed  CAS  Google Scholar 

  63. Haqq AM, Stadler DD, Rosenfeld RG, et al. Circulating ghrelin levels are suppressed by meals and octreotide therapy in children with Prader-Willi syndrome. J Clin Endocrinol Metab. 2003; 88(8):3573–6.

    Article  PubMed  CAS  Google Scholar 

  64. Butler MG, Bittel DC, Talebizadeh Z. Plasma peptide YY and ghrelin levels in infants and children with Prader-Willi syndrome. J Pediatr Endocrinol Metab. 2004; 17(9):1177–84.

    Article  PubMed  CAS  Google Scholar 

  65. Butler MG, Bittel DC. Plasma obestatin and ghrelin levels in subjects with Prader-Willi syndrome. Am J Med Genet A. 2007; 143(5):415–21.

    PubMed  Google Scholar 

  66. Holsen LM, Zarcone JR, Brooks WM, et al. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Obesity (Silver Spring). 2006; 14(6):1028–37.

    Article  Google Scholar 

  67. Butler MG, Theodoro MF, Bittel DC, Donnelly JE. Energy expenditure and physical activity in Prader-Willi syndrome: comparison with obese subjects. Am J Med Genet A. 2007; 143(5):449–59.

    PubMed  Google Scholar 

  68. Scheimann A, Butler MG, Stevenson D, Miller JL, Cuffari C, Klish WJ. Efficacy of laparoscopic sleeve gastrectomy as a stand-alone technique for children with morbid obesity and BioEnterics intragastric balloon for treatment of morbid obesity in Prader-Willi syndrome: specific risks and benefits. Obes Surg. 2009; 19(5):671–2.

    Article  PubMed  Google Scholar 

  69. Holm VA, Pipes PL. Food and children with Prader-Willi syndrome. Am J Dis Child. 1976; 130(10):1063–7.

    PubMed  CAS  Google Scholar 

  70. Holm VA, Sulzbacher SJ, Pipes PL. Prader-Willi Syndrome. In: Holm VA, Sulzbacher SJ, Pipes PL, editors. Baltimore, MD: University Park Press; 1981. pp. 1–349.

    Google Scholar 

  71. Butler MG. Management of obesity in Prader-Willi syndrome. Nat Clin Pract Endocrinol Metab. 2006; 2(11):592–3.

    Article  PubMed  Google Scholar 

  72. Butler MG, Meaney FJ. Standards for selected anthropometric measurements in Prader-Willi syndrome. Pediatrics. 1991; 88(4):853–60.

    PubMed  CAS  Google Scholar 

  73. Bastepe M, Juppner H. GNAS locus and pseudohypoparathyroidism. Horm Res. 2005; 63(2):65–74.

    Article  PubMed  CAS  Google Scholar 

  74. Bastepe M. The GNAS locus and pseudohypoparathyroidism. Adv Exp Med Biol. 2008; 626:27–40.

    Article  PubMed  CAS  Google Scholar 

  75. GNAS complex locus. http://www.ncbl/nlm.nih.gov/OMIM. Accessed 12 Mar 2010.

  76. Albright F, Burnett CH, Smith PH, Parson W. Pseudo-hypoparathyroidism – an example of “Seabright-Bantam syndrome”: report of three cases. Endocrinology. 1942; 30:922–32.

    CAS  Google Scholar 

  77. Levine MA. Clinical spectrum and pathogenesis of pseudohypoparathyroidism. Rev Endocr Metab Disord. 2000; 1(4):265–74.

    Article  PubMed  CAS  Google Scholar 

  78. Jones KL (editor.). Smith’s recognizable patterns of human malformation. 5th ed. Philadelphia, PA: W.B. Saunders Company 2006.

    Google Scholar 

  79. McCune DJ, Bruch H. Progress in pediatrics: osteodystrophia fibrosa. Am J Dis Child. 1937; 54:806–48.

    Google Scholar 

  80. Albright F, Butler AM, Hampton AO, Smith P. Syndrome characterized by osteitis fibrosa disseminata, areas of pigmentation and endocrine dysfunction, with precocious puberty in females: report of five cases. New Eng J Med. 1937; 216:727–46.

    Article  Google Scholar 

  81. McCune-Albright syndrome. http://www.ncbl/nlm.nih.gov/OMIM. Accessed 12 Mar 2010.

  82. Aldred MA, Bagshaw RJ, Macdermot K, et al. Germline mosaicism for a GNAS1 mutation and Albright hereditary osteodystrophy. J Med Genet. 2000; 37(11):E35.

    Article  PubMed  CAS  Google Scholar 

  83. Lumbroso S, Paris F, Sultan C. Activating Gsalpha mutations: analysis of 113 patients with signs of McCune-Albright syndrome – a European Collaborative Study. J Clin Endocrinol Metab. 2004; 89(5):2107–13.

    Article  PubMed  CAS  Google Scholar 

  84. Williamson EA, Ince PG, Harrison D, Kendall-Taylor P, Harris PE. G-protein mutations in human pituitary adrenocorticotrophic hormone-secreting adenomas. Eur J Clin Invest. 1995; 25(2):128–31.

    Article  PubMed  CAS  Google Scholar 

  85. Hayward BE, Barlier A, Korbonits M, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest. 2001; 107(6):R31–6.

    Article  PubMed  CAS  Google Scholar 

  86. Stefan M, Nicholls RD. What have rare genetic syndromes taught us about the pathophysiology of the common forms of obesity? Curr Diab Rep. 2004; 4(2):143–50.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Carla Meister for expert preparation of the manuscript. Partial funding support was provided by the NIH rare disease grant (1U54HD061222) and a grant from Prader–Willi Syndrome Association (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin G. Butler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Butler, M.G. (2011). Known Clinical Epigenetic Disorders with an Obesity Phenotype: Prader–Willi Syndrome and the GNAS Locus. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics