Skip to main content

A Profile of Ring-hydroxylating Oxygenases that Degrade Aromatic Pollutants

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 206

Abstract

Aromatic compounds are widely distributed in nature and range in size from low molecular mass compounds, such as phenols, to polymers such as lignin (Vaillancourt et al. 2006). As a result of the delocalization of their resonance structure, aromatic compounds are exceptionally stable (McMurry 2004). Because of the metabolic pathways they have evolved, microorganisms have an exceptional ability to utilize aromatic compounds as their sole source of energy and carbon (Pieper and Reineke 2001; Reineke and Knackmuss 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aken BV (2009) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Article  CAS  Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–265

    Article  CAS  Google Scholar 

  • Armengaud J, Timmis KN (1997) Molecular characterization of Fdx1, a putidaredoxin-type [2Fe–2S] ferredoxin able to transfer electrons to the dioxin dioxygenase of Sphingomonas sp. RW1. Eur J Biochem 247:833–842

    Article  CAS  Google Scholar 

  • Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H (2006) Electron transfer complex formation between oxygenase and ferredoxin components in Rieske nonheme iron oxygenase system. Structure 14:1779–1789

    Article  CAS  Google Scholar 

  • Asturias JA, Diaz E, Timmis KN (1995) The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from gram-negative bacteria. Gene 156:11–18

    Article  CAS  Google Scholar 

  • Bashton M, Chothia C (2007) The generation of new protein functions by the combination of domains. Structure 15:85–99

    Article  CAS  Google Scholar 

  • Batie CJ, Ballou DP, Correll CC (1991) Phthalate dioxygenase reductase and related flavin–iron–sulfur containing electron transferases. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, FL, pp 544–556

    Google Scholar 

  • Brugna M, Nitschke W, Asso M, Guigliarelli B, Lemesle-Meunier D, Schmidt C (1999) Redox components of cytochrome bc-type enzymes in acidophilic prokaryotes. II. The Rieske protein of phylogenetically distant acidophilic organisms. J Biol Chem 274:16766–16772

    Article  CAS  Google Scholar 

  • Brühlmann F, Chen W (1999) Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol Bioeng 63:544–551

    Article  Google Scholar 

  • Bünz PV, Cook AM (1993) Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: Angular dioxygenation by a three-component enzyme system. J Bacteriol 175: 6467–6475

    Google Scholar 

  • Butler CS, Mason JR (1997) Structure function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84

    Article  CAS  Google Scholar 

  • Carredano E, Karlsson A, Kauppi B, Choudhury D Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S (2000) Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding. J Mol Biol 296:701–712

    Article  CAS  Google Scholar 

  • Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Biological identity and diversity in photosynthesis and respiration: Structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5:1613–1625

    Article  CAS  Google Scholar 

  • Castresana J, Lübben M, Saraste M (1995) New archae bacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol 250:202–210

    Article  CAS  Google Scholar 

  • Chang HK, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537

    CAS  Google Scholar 

  • Chebrou H, Hurtubise Y, Barriault D, Sylvestre M (1999) Heterologous expression and characterization of the purified oxygenase component of Rhodococus globerulus P6 biphenyl dioxygenase and of chimeras derived from it. J Bacteriol 181:4805–4811

    CAS  Google Scholar 

  • Colbert CL, Couture MMJ, Eltis LD, Bolin J (2000) A cluster exposed: Structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe–S proteins. Structure 8:1267–1278

    Article  CAS  Google Scholar 

  • Cosper NJ, D. Eby DM, Kounosu A, Kurosawa N, Neidle EL, Kurtz DM (2002) Rieske-type [2Fe–2S] clusters redox-dependent structural changes in archaeal and bacterial. Protein Sci 11:2969–2973

    Article  CAS  Google Scholar 

  • Denke E, Merbitz-zahradnik T, Hatzfeld OM, Snyder CH, Link TA, Trumpower BL (1998) Alteration of the midpoint potential and catalytic activity of the Rieske iron–sulfur protein by changes of amino acids forming hydrogen bonds to the iron–sulfur cluster. J Biol Chem 273:9085–9093

    Article  CAS  Google Scholar 

  • Dong X, Fushinobu S, Fukuda E, Terada T, Nakamura S, Shimizu K, Nojiri H, Omori T, Shoun H, Wakagi T (2005) Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. J Bacteriol 187:2483–2490

    Article  CAS  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci USA 104:16816–16821

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist 179:318–333

    Article  CAS  Google Scholar 

  • Erickson BD, Mondello FJ (1992) Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174:2903–2912

    CAS  Google Scholar 

  • Ferraro DJ, Gakhar L, Ramaswamy S (2005) Rieske business: structure–function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338:175–190

    Article  CAS  Google Scholar 

  • Fontecave M, Ollagnier-de-Choudens S (2008) Iron–sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Arch Biochem Biophys 474:226–237

    Article  CAS  Google Scholar 

  • Friemann R, Ivkovic-Jensen MM, Lessner DJ, Gibson CL, Yu DT, Parales RE, Eklund H, Ramaswamy S (2005) Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J Mol Biol 348:1139–1151

    Article  CAS  Google Scholar 

  • Friemann R, Lee K, Brown EN, Gibson DT, klund H, Ramaswamy S (2009) Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Acta Crystallog,Sect D 65:24–33

    Article  CAS  Google Scholar 

  • Fukuda M, Yasukochi Y, Kikuchi Y, Nagata Y, Kimbara K, Horiuchi H, Takagi M, Yano K (1994) Identification of the bphA and bphB genes of Pseudomonas sp. strains KKS102 involved in degradation of biphenyl and polychlorinated biphenyls. Biochem Biophys Res Commun 202:850–856

    Article  CAS  Google Scholar 

  • Furukawa K, Hirose J, Hayashida S, Nakamura K (1994) Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J Bacteriol 176:2121–2123

    CAS  Google Scholar 

  • Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J Mol Biol 342:1041–1052

    CAS  Google Scholar 

  • Gakhar L, Malik ZA, Allen CC, Lipscomb DA, Larkin MJ, Ramaswamy S (2005) Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J Bacteriol 187:7222–7231

    CAS  Google Scholar 

  • Gibson DT (1971) The microbial oxidation of aromatic compounds. Crit Rev Microbiol 1:199–223

    Article  CAS  Google Scholar 

  • Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE (1995) Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4. J Bacteriol 177:2615–2621

    CAS  Google Scholar 

  • Guergova-Kuras M, Kuras R, Ugulava N, Hadad I, Crofts AR (2000) Specific mutagenesis of the Rieske iron–sulfur protein in Rhodobacter sphaeroides shows that both the thermodynamic gradient and the pK of the oxidized form determine the rate of quinol oxidation by the bc1 complex. Biochemistry 39:7436–7444

    Article  CAS  Google Scholar 

  • Harayama S, Rekik M, Bairoch A, Neidle EL, Ornston LN (1991) Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J Bacteriol 173:7540–7548

    CAS  Google Scholar 

  • Hirose J, Suyama A, Hayashida S, Furukawa K (1994) Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenase. Gene 138:27–33

    Article  CAS  Google Scholar 

  • Irie S, Doi S, Yorifuji T, Takagi M, Yano K (1987) Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida. J Bacteriol 169: 5174–5179

    CAS  Google Scholar 

  • Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V (2007a) The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. FEBS J 274:2470–2481

    Article  CAS  Google Scholar 

  • Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V (2007b) The catalytic pocket of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. Biochem Biophy Res Commu 352:861–866

    Article  CAS  Google Scholar 

  • James CA, Strand S (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20:237–241

    Article  CAS  Google Scholar 

  • Jeffrey AM, Yeh HJ, Jerina DM, Patel TR, Davey JF, Gibson DT (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 14:575–584

    Article  CAS  Google Scholar 

  • Jiang H, Parales RE, Lynch NA, Gibson DT (1996) Site-directed mutagenesis of conserved amino acids in the alpha-subunit of toluene dioxygenase: potential mononuclear nonheme iron coordination sites. J Bacteriol 178:3133–3139

    CAS  Google Scholar 

  • Jones RM, Britt-Compton B, Williams PA (2003) The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J Bacteriol 185:5847–-5853

    Article  CAS  Google Scholar 

  • Ju KS, Parales RE (2006) Control of substrate specificity by active site residues in nitrobenzene dioxygenase. Appl Environ Microbiol 72:1817–1824

    Article  CAS  Google Scholar 

  • Junker F, Kiewitz R, Cook AM (1997) Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J Bacteriol 179:919–927

    CAS  Google Scholar 

  • Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299: 1039–1042

    Article  CAS  Google Scholar 

  • Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1.2-Dioxygenase. Structure 6:571–586

    Article  CAS  Google Scholar 

  • Keenan BG, Leungsakul T, Smets BF, Wood TK (2004) Saturation mutagenesis of Burkholderia cepacia R34 2,4-dinitrotoluene dioxygenase at DntAc valine 350 for synthesizing nitrohydroquinone, methylhydroquinone, and methoxyhydroquinone. Appl Environ Microbiol 70:3221–3222

    Article  CAS  Google Scholar 

  • Keenan BG, Leungsakul T, Smets BF, Mori M, Henderson DE, Wood TK (2005) Protein engineering of the archetypal nitroarene dioxygenase of Ralstonia sp. strain U2 for activity on aminonitrotoluenes and dinitrotoluenes through alpha-subunit residues leucine 225, phenylalanine 350, and glycine 407. J Bacteriol 187:3302–3310

    Article  CAS  Google Scholar 

  • Keenan BG, Wood TK (2006) Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4, 6-dinitrotoluene/4-amino-2,6-dinitrotoluene. Appl Microbiol Biotechnol 73:827–838

    Article  CAS  Google Scholar 

  • Kimura N, Nishi A, Goto M, Furukawa K (1997) Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J Bacteriol 179:3936–3943

    CAS  Google Scholar 

  • Kolling DJ, Brunzelle JS, Lhee SM, Crofts AR, Nair SK (2007) Atomic resolution structures of Rieske iron–sulfur protein: role of hydrogen bonds in tuning the redox potential of iron–sulfur clusters. Structure 15:29–38

    Article  CAS  Google Scholar 

  • Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Acc Chem Res 40:475–483

    Article  CAS  Google Scholar 

  • Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666

    Article  CAS  Google Scholar 

  • Kurkela S, Lehväslaiho H, Palva ET, Teeri TH (1988) Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene 73:355–362

    Article  CAS  Google Scholar 

  • Kweon O, Kim SJ, Baek S, Chae JC, Adjei MD, Baek DH, Kim YC, Cerniglia CE (2008) A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochemistry 9:11.

    Article  CAS  Google Scholar 

  • Lee KS, Parales JV, Friemann R, Parales RE (2005) Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42. J Ind Microbiol Biotechnol 32:465–473

    Article  CAS  Google Scholar 

  • Mackova M, Macek T, Ocenaskova J, Burkhard J, Demnerova K, Pazlarova J (1997) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodeterior Biodegrad 39: 317–25

    Article  CAS  Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Ann Rev Microbio 46:277–305

    Article  CAS  Google Scholar 

  • Martin VJ, Mohn WW (1999) A novel aromatic-ring-hydroxylating dioxygenase from the diterpenoid degrading bacterium Pseudomonas abietaniphila BKME-9. J Bacteriol 181:2675–2682

    CAS  Google Scholar 

  • Martins BM, Svetlitchnaia T, Dobbek H (2005) 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe–2S] center oxidation/reduction. Structure 13:817–824

    Article  CAS  Google Scholar 

  • McMurry JE (2004) Organic chemistry, 6th edn. Brooks/Cole, Pacific Grove, CA

    Google Scholar 

  • Merbitz-Zahradnik T, Zwicker K, Nett JH, Link TA, Trumpower BL (2003) Elimination of the disulfide bridge in the Rieske iron–sulfur protein allows assembly of the [2Fe–2S] cluster into the Rieske protein but damages the ubiquinol oxidation site in the cytochrome bc1 complex, Biochemistry 42:13637–13645

    Article  CAS  Google Scholar 

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl–chlorophenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97: 496–505

    Article  CAS  Google Scholar 

  • Nakatsu CH, Straus NA, Wyndham RC (1995) The nucleotide sequence of the Tn5271 3-chlorobenzoate 3, 4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141:485–495

    Article  CAS  Google Scholar 

  • Nam JW, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T (2001) New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotechnol Biochem 65:254–263

    Article  CAS  Google Scholar 

  • Nam JW, Nojiri H, Noguchi H, Uchimura H, Yoshida T, Habe H, Yamane H, Omori T (2002) Purification and characterization of carbazole 1,9a-dioxygenase, a three-component dioxygenase system of Pseudomonas resinovorans strain CA10. Appl Environ Microbiol 68:5882–5890

    Article  CAS  Google Scholar 

  • Nam JW, Noguchi H, Fujimoto Z, Mizuno H, Ashikawa Y, Abo M. Fushinobu S, Kobashi N, Wakagi T, Iwata K, Yoshida T, Habe H, Yamane H, Omori T, Nojiri H (2005) Crystal structure of the ferredoxin component of carbazole 1,9a-dioxygenase of Pseudomonas resinovorans strain CA10, a novel Rieske non-heme iron oxygenase system. Proteins Struct Funct Genet 58:779–789

    Article  CAS  Google Scholar 

  • Neibergall MB, Stubna A, Mekmouche Y, Münck E, Lipscomb JD (2007) Hydrogen peroxide dependent cis-dihydroxylation of benzoate by fully oxidized benzoate 1,2-dioxygenase. Biochemistry 46:8004–8016

    Article  CAS  Google Scholar 

  • Neidle EL, Harnett C, Ornston LN, Bairoch A, Rekik M, Hara-yama S (1991) Nucleotide sequence of the Acinetobacter calcoaceticus benABC genes for benzoate 1, 2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol 173: 5385–5395

    CAS  Google Scholar 

  • Nojiri H, Ashikawa Y, Noguchi H, Nam JW, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T (2005) Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase. J Mol Biol 351:355–370

    Article  CAS  Google Scholar 

  • Parales JV, Parales RE, Resnick SM, Gibson DT (1998a) Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the alpha-subunit of the oxygenase component. J Bacteriol 180:1194–1199

    CAS  Google Scholar 

  • Parales RE, Emig MD, Lynch NA, Gibson DT (1998b) Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J Bacteriol 180:2337–2344

    CAS  Google Scholar 

  • Parales RE, Parales JV, Gibson DT (1999) Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity. J Bacteriol 181:1831–1837

    CAS  Google Scholar 

  • Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT (2000) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182:16417–1649

    Google Scholar 

  • Parales RE (2003) The role of active-site residues in naphthalene dioxygenase. J Ind Microbiol Biotechnol 30:271–278

    Article  CAS  Google Scholar 

  • Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y (2006a) Codon modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25:124–132

    Article  CAS  Google Scholar 

  • Peng RH, Xiong AS, Yao QH (2006b) A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl Microbiol Biotechnol 73:234–240

    Article  CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  Google Scholar 

  • Peracchi A (2001) Enzyme catalysis: removing chemically “essential” residues by site-directed mutagenesis. Trends Biochem Sci 26:497–503

    Article  CAS  Google Scholar 

  • Pieper DH, Rieneke W (2001) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  Google Scholar 

  • Plapp BV (1995) Site-directed mutagenesis: a tool for studying enzyme catalysis. Methods Enzymol 249:91–119

    Article  CAS  Google Scholar 

  • Raag R, Poulos TL (1989) Crystal structure of the carbon monoxide–substrate–cytochrome P-450CAM ternary complex. Biochemistry 28:7586–7592

    Article  CAS  Google Scholar 

  • Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Ind Microbiol 17:438–457

    CAS  Google Scholar 

  • Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Ann Rev Microbiol 42:263–287

    Article  CAS  Google Scholar 

  • Rieske JS, Maclennan DH, Coleman R (1964) Isolation and properties of an iron–protein from the (reduced coenzyme Q) –cytochrome c reductase complex of respiratory chain. Biochem Biophys Res Commun 15:338–344

    Article  Google Scholar 

  • Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602

    CAS  Google Scholar 

  • Rosche B, Tshisuaka B, Fetzner S, Lingens F (1995) 2-Oxo-1,2-dihydroquinoline 8-monooxygenase, a two-component enzyme system from Pseudomonas putida 86. J Boil Chem 270:17836–17842

    Article  CAS  Google Scholar 

  • Rosche B, Tshisuaka B, Hauer B, Lingens F, Fetzner S (1997) 2-Oxo-1,2-dihydroquinoline 8-monooxygenase: phylogenetic relationship to other multicomponent nonheme iron oxygenases. J Bacteriol 179:3549–3554

    CAS  Google Scholar 

  • Sato S, Nam JW, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Identification and characterization of gene encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J Bacteriol 179:4850–4858

    CAS  Google Scholar 

  • Schäfer G, Purschke W, Schmidt CL (1996) On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 18:173–188

    Article  Google Scholar 

  • Schmidt CL, Shaw L (2001) A comprehensive phylogenetic analysis of Rieske and Rieske-type iron–sulfur proteins. J Bioeng Biom 33:9–26

    Article  CAS  Google Scholar 

  • Schröter T, Hatzfeld OM, Gemeinhardt S, Korn M, Friedrich T, Ludwig B, Link TA (1998) Mutational analysis of residues forming hydrogen bonds in the Rieske [2Fe–2S] cluster of the cytochrome bc1 complex in Paracoccus denitrificans. Eur J Biochem 255:100–106

    Article  Google Scholar 

  • Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T (2007) Molecular mechanism of the redox-dependent interaction between NADH dependent ferredoxin reductase and Rieske-type [2Fe–2S] ferredoxin. J Mol Biol 373:382–400

    Article  CAS  Google Scholar 

  • Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37

    Article  CAS  Google Scholar 

  • Stingley RL, Khan AA, Cerniglia CE (2004) Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem Biophys Res Commun, 322:133–146

    Article  CAS  Google Scholar 

  • Subramanian V, Liu TN, Yeh WK, Gibson DT (1979) Toluene dioxygenase: purification of an iron–sulfur protein by affinity chromatography. Biochem Biophys Res Commun 91:1131–1139

    Article  CAS  Google Scholar 

  • Suenaga H, Nishi A, Watanabe T, Sakai M, Furukawa K (1999) Engineering a hybrid pseudomonad to acquire 3,4-dioxygenase activity for polychlorinated biphenyls. J Biosci Bioeng 87: 430–435

    Article  CAS  Google Scholar 

  • Suenaga H, Watanabe T, Sato M, Sakai M, Ngadiman M, Furukawa K (2002) Alteration of regiospecificity in biphenyl dioxygenase by active-site engineering. J Bacteriol 184:3682–3688

    Article  CAS  Google Scholar 

  • Suyama A, Iwakiri R, Kimura N, Nishi A, Nakamura K, Furukawa K (1996) Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene. J Bacteriol 178:4039–4046

    CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71: 8500–8505

    Article  CAS  Google Scholar 

  • Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176:2444–2449

    CAS  Google Scholar 

  • Tarasev M, Ballou DP (2005) Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase. Biochemistry 44:6197–6207

    Article  CAS  Google Scholar 

  • Treadway SL, Yanagimachi KS, Lankenau E Lessard PA, Stephanopoulos G, Sinskey AJ (1999) Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol 51:786–793

    Article  CAS  Google Scholar 

  • Trumpower BL (1981) Function of the iron–sulfur protein of the cytochrome bc1 segment in electron-transfer and energy-conserving reactions of the mitochondrial respiratory chain. Biochim Biophys Acta 639:129–155

    Article  CAS  Google Scholar 

  • Trumpower BL, Gennis RB (1994) Energy transduction by cytochrome complexes in to transmembrane proton translocation. Ann Rev Biochem 63:675–716

    Article  CAS  Google Scholar 

  • Ugulava NB, Crofts AR (1998) CD-monitored redox titration of the Rieske Fe–S protein of Rhodobacter sphaeroides: pH dependence of the midpoint potential in isolated bc1 complex and in membranes. FEBS Lett 440:409–413

    Article  CAS  Google Scholar 

  • Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Bio 41: 241–267

    Article  CAS  Google Scholar 

  • Veźina J, Barriault D, Sylvestre M (2007) Family shuffling of soil DNA to change the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase. J Bacteriol 189:779–788

    Article  CAS  Google Scholar 

  • Wolfe MD, Parales JV, Gibson DT, Lipscomb JD (2001) Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J Biol Chem 276:1945–-1953

    Article  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res 32: e98

    Article  CAS  Google Scholar 

  • Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1: 791–797

    Article  CAS  Google Scholar 

  • Xiong AS, Peng RH, Zhuang J, Liu JG, Gao F, Fang X, Cai B, Yao QH (2007a) A semi-rational design strategy of directed evolution combined with chemical synthesis of DNA sequences. Biol Chem 388: 1291–1300

    Article  CAS  Google Scholar 

  • Xiong AS, Peng RH, Zhuang J, Li X, Xue Y, Liu JG, Cai B, Chen JM, Yao QH (2007b) Directed evolution of a beta-galactosidase from Pyrococcus woesei resulting in increased thermostable beta-glucuronidase activity. Appl Microbiol Biotechnol 77:569–578

    Article  CAS  Google Scholar 

  • Xiong AS, Peng RH, Zhuang J, Gao F,Li Y, Cheng ZM, Yao QH (2008) Chemical gene synthesis: strategies, softwares, error corrections, and applications. FEMS Microbiol Rev 32: 522–540

    Article  CAS  Google Scholar 

  • Ziffer H, Jerina DM, Gibson DT, Kobal VM (1973) Absolute stereochemistry of the (+)-cis-1, 2-dihydroxy-3-methylcyclohexa-3,5-diene produced from toluene by Pseudomonas putida. J Am Chem Soc 95:4048–4049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by 863 Program (2006AA06Z358; 2006AA10Z117; 2008AA10Z401); Shanghai Key Laboratory and Basic Research Project (07dz22011); and National Natural Science Foundation (06ZR14073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Hong Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Peng, RH. et al. (2010). A Profile of Ring-hydroxylating Oxygenases that Degrade Aromatic Pollutants. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 206. Reviews of Environmental Contamination and Toxicology, vol 206. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6260-7_4

Download citation

Publish with us

Policies and ethics