Skip to main content

Misfolded Proteins and Retinal Dystrophies

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Many mutations associated with retinal degeneration lead to the production of misfolded proteins by cells of the retina. Emerging evidence suggests that these abnormal proteins cause cell death by activating the Unfolded Protein Response, a set of conserved intracellular signaling pathways that detect protein misfolding within the endoplasmic reticulum and control protective and proapoptotic signal transduction pathways. Here, we review the misfolded proteins associated with select types of retinitis pigmentosa, Stargadt-like macular degeneration, and Doyne Honeycomb Retinal Dystrophy and discuss the role that endoplasmic reticulum stress and UPR signaling play in their pathogenesis. Last, we review new therapies for these diseases based on preventing protein misfolding in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anukanth A, Khorana HG (1994) Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain. J Biol Chem 269:19738–19744

    CAS  PubMed  Google Scholar 

  • Berson EL, Grimsby JL, Adams SM et al (2001) Clinical features and mutations in patients with dominant retinitis pigmentosa-1 (RP1). Invest Ophthalmol Vis Sci 42:2217–2224

    CAS  PubMed  Google Scholar 

  • Blais JD, Addison CL, Edge R et al (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26:9517–9532

    Article  CAS  PubMed  Google Scholar 

  • Campochiaro PA (2007) Molecular targets for retinal vascular diseases. J Cell Physiol 210:575–581

    Article  CAS  PubMed  Google Scholar 

  • Frederick JM, Krasnoperova NV, Hoffmann K et al (2001) Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci 42:826–833

    CAS  PubMed  Google Scholar 

  • Fukuda MN, Papermaster DS, Hargrave PA (1979) Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J Biol Chem 254:8201–8207

    CAS  PubMed  Google Scholar 

  • Hargrave PA (2001) Rhodopsin structure, function, and topography the Friedenwald lecture. Invest Ophthalmol Vis Sci 42:3–9

    CAS  PubMed  Google Scholar 

  • Karan G, Yang Z, Howes K et al (2005) Loss of ER retention and sequestration of the wild-type ELOVL4 by Stargardt disease dominant negative mutants. Mol Vis 11:657–664

    CAS  PubMed  Google Scholar 

  • Karan G, Yang Z, Zhang K (2004) Expression of wild type and mutant ELOVL4 in cell culture: subcellular localization and cell viability. Mol Vis 10:248–253

    CAS  PubMed  Google Scholar 

  • Kaushal S, Khorana HG (1994) Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry 33:6121–6128

    Article  CAS  PubMed  Google Scholar 

  • Kaushal S, Ridge KD, Khorana HG (1994) Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci USA 91:4024–4028

    Article  CAS  PubMed  Google Scholar 

  • Krebs MP, Noorwez SM, Malhotra R et al (2004) Quality control of integral membrane proteins. Trends Biochem Sci 29:648–655

    Article  CAS  PubMed  Google Scholar 

  • Liang CJ, Yamashita K, Muellenberg CG et al (1979) Structure of the carbohydrate moieties of bovine rhodopsin. J Biol Chem 254:6414–6418

    CAS  PubMed  Google Scholar 

  • Lin JH, Li H, Yasumura D et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    Article  CAS  PubMed  Google Scholar 

  • Lin JH, Walter P, Yen TS (2008) Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol 3:399–425

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Garriga P, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa. Proc Natl Acad Sci USA 93:4554–4559

    Article  CAS  PubMed  Google Scholar 

  • Marmorstein LY, Munier FL, Arsenijevic Y et al (2002) Aberrant accumulation of EFEMP1 underlies drusen formation in Malattia Leventinese and age-related macular degeneration. Proc Natl Acad Sci USA 99:13067–13072

    Article  CAS  PubMed  Google Scholar 

  • Mendes HF, Cheetham ME (2008) Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Hum Mol Genet 17:3043–3054

    Article  CAS  PubMed  Google Scholar 

  • Noorwez SM, Kuksa V, Imanishi Y et al (2003) Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278:14442–14450

    Article  CAS  PubMed  Google Scholar 

  • Noorwez SM, Malhotra R, McDowell JH et al (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279:16278–16284

    Article  CAS  PubMed  Google Scholar 

  • Noorwez SM, Ostrov DA, McDowell JH et al (2008) A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin. Invest Ophthalmol Vis Sci 49:3224–3230

    Article  PubMed  Google Scholar 

  • Oh CS, Toke DA, Mandala S et al (1997) ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272:17376–17384

    Article  CAS  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  • Roybal CN, Marmorstein LY, Vander Jagt DL et al (2005) Aberrant accumulation of fibulin-3 in the endoplasmic reticulum leads to activation of the unfolded protein response and VEGF expression. Invest Ophthalmol Vis Sci 46:3973–3979

    Article  PubMed  Google Scholar 

  • Ryoo HD, Domingos PM, Kang MJ et al (2007) Unfolded protein response in a Drosophila model for retinal degeneration. Embo J 26:242–252

    Article  CAS  PubMed  Google Scholar 

  • Saliba RS, Munro PM, Luthert PJ et al (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115:2907–2918

    CAS  PubMed  Google Scholar 

  • Sohocki MM, Daiger SP, Bowne SJ et al (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17:42–51

    Article  CAS  PubMed  Google Scholar 

  • Stone EM, Lotery AJ, Munier FL et al (1999) A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22:199–202

    Article  CAS  PubMed  Google Scholar 

  • Sung CH, Schneider BG, Agarwal N et al (1991) Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci USA 88:8840–8844

    Article  CAS  PubMed  Google Scholar 

  • Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47:3234–3241

    Article  PubMed  Google Scholar 

  • Vasireddy V, Sharon M, Salem N Jr et al (2008) Role of ELOVL4 in fatty acid metabolism. Adv Exp Med Biol 613:283–290

    Article  CAS  PubMed  Google Scholar 

  • Vasireddy V, Vijayasarathy C, Huang J et al (2005) Stargardt-like macular dystrophy protein ELOVL4 exerts a dominant negative effect by recruiting wild-type protein into aggresomes. Mol Vis 11:665–676

    CAS  PubMed  Google Scholar 

  • Yang LP, Wu LM, Guo XJ et al (2007) Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48:5191–5198

    Article  PubMed  Google Scholar 

  • Zhang K, Kniazeva M, Han M et al (2001) A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat Genet 27:89–93

    CAS  PubMed  Google Scholar 

  • Zhang XM, Yang Z, Karan G et al (2003) Elovl4 mRNA distribution in the developing mouse retina and phylogenetic conservation of Elovl4 genes. Mol Vis 9:301–307

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Victory Joseph for helpful comments. This work was funded by NIH grants EY01919, EY06842, EY02162, EY018313; the Foundation Fighting Blindness; and RPB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lin, J.H., LaVail, M.M. (2010). Misfolded Proteins and Retinal Dystrophies. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_14

Download citation

Publish with us

Policies and ethics