Skip to main content

Multiprotein Complexes of Retinitis Pigmentosa GTPase Regulator (RPGR), a Ciliary Protein Mutated in X-Linked Retinitis Pigmentosa (XLRP)

  • Chapter
  • First Online:
Book cover Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Mutations in Retinitis Pigmentosa GTPase Regulator (RPGR) are a frequent cause of X-linked Retinitis Pigmentosa (XLRP). The RPGR gene undergoes extensive alternative splicing and encodes for distinct protein isoforms in the retina. Extensive studies using isoform-specific antibodies and mouse mutants have revealed that RPGR predominantly localizes to the transition zone to primary cilia and associates with selected ciliary and microtubule-associated assemblies in photoreceptors. In this chapter, we have summarized recent advances on understanding the role of RPGR in photoreceptor protein trafficking. We also provide new evidence that suggests the existence of discrete RPGR multiprotein complexes in photoreceptors. Piecing together the RPGR-interactome in different subcellular compartments should provide critical insights into the role of alternative RPGR isoforms in associated orphan and syndromic retinal degenerative diseases.

Retinitis Pigmentosa (RP: MIM #268000) is a leading cause of inherited blindness in developed countries. RP refers to a group of debilitating neurodegenerative diseases with clinically heterogeneous findings, which include bone spicule like pigmentary deposits in the retina, progressive loss of peripheral vision and eventually deterioration of central vision due to cone loss (Bird 1987; Fishman et al. 1988; Heckenlively et al. 1988; Sullivan and Daiger 1996). Over 30 RP genes have been identified so far (http://www.sph.uth.tmc.edu/Retnet) (Hartong et al. 2006). No effective approach exists for the management or treatment of RP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayyagari R, Demirci FY, Liu J et al (2002) X-linked recessive atrophic macular degeneration from RPGR mutation. Genomics 80(2):166–171

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL et al (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    Article  CAS  PubMed  Google Scholar 

  • Bartolini F, Bhamidipati A, Thomas S et al (2002) Functional overlap between retinitis pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J Biol Chem 277(17):14629–14634

    Article  CAS  PubMed  Google Scholar 

  • Beltran WA, Hammond P, Acland GM et al (2006) A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(4):1669–1681

    Article  PubMed  Google Scholar 

  • Besharse JC (1986) The Retina: a model for cell biological studies Part I. Academic, New York, pp 297–352

    Google Scholar 

  • Besharse JC, Baker SA, Luby-Phelps K et al (2003) Photoreceptor intersegmental transport and retinal degeneration: a conserved pathway common to motile and sensory cilia. Adv Exp Med Biol 533:157–164

    CAS  PubMed  Google Scholar 

  • Bird AC (1975) X-linked retinitis pigmentosa. Br J Ophthalmol 59(4):177–199

    Article  CAS  PubMed  Google Scholar 

  • Bird AC (1987) Clinical investigation of retinitis pigmentosa. Prog Clin Biol Res 247:3–20

    CAS  PubMed  Google Scholar 

  • Bok D, Young RW (1972) The renewal of diffusely distributed protein in the outer segments of rods and cones. Vision Res 12(2):161–168

    Article  CAS  PubMed  Google Scholar 

  • Boylan JP, Wright AF (2000) Identification of a novel protein interacting with RPGR. Hum Mol Genet 9(14):2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Breuer DK, Yashar BM, Filippova E et al (2002) A comprehensive mutation analysis of RP2 and RPGR in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 70(6):1545–1554

    Article  CAS  PubMed  Google Scholar 

  • Buraczynska M, Wu W, Fujita R et al (1997) Spectrum of mutations in the RPGR gene that are identified in 20% of families with X-linked retinitis pigmentosa. Am J Hum Genet 61(6):1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Chang B, Khanna H, Hawes N et al (2006) In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 15(11):1847–1857

    Article  CAS  PubMed  Google Scholar 

  • Chapple JP, Hardcastle AJ, Grayson C et al (2000) Mutations in the N-terminus of the X-linked retinitis pigmentosa protein RP2 interfere with the normal targeting of the protein to the plasma membrane. Hum Mol Genet 9(13):1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289(6):F1159–F1169

    Article  CAS  PubMed  Google Scholar 

  • Demirci FY, Rigatti BW, Mah TS et al (2006) A novel RPGR exon ORF15 mutation in a family with X-linked retinitis pigmentosa and Coats'-like exudative vasculopathy. Am J Ophthalmol 141(1):208–210

    Article  CAS  PubMed  Google Scholar 

  • Demirci FY, Rigatti BW, Wen G et al (2002) X-linked cone-rod dystrophy (locus COD1): identification of mutations in RPGR exon ORF15. Am J Hum Genet 70(4):1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Deretic D, Williams AH, Ransom N et al (2005) Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4). Proc Natl Acad Sci USA 102(9):3301–3306

    Article  CAS  PubMed  Google Scholar 

  • Dryja TP, Adams SM, Grimsby JL et al (2001) Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 68(5):1295–1298

    Article  CAS  PubMed  Google Scholar 

  • Fishman GA (1978) Retinitis pigmentosa. Genetic percentages. Arch Ophthalmol 96(5):822–826

    CAS  PubMed  Google Scholar 

  • Fishman GA, Farber MD, Derlacki DJ (1988) X-linked retinitis pigmentosa. Profile of clinical findings. Arch Ophthalmol 106(3):369–375

    CAS  PubMed  Google Scholar 

  • Fishman GA, Weinberg AB, McMahon TT (1986) X-linked recessive retinitis pigmentosa. Clinical characteristics of carriers. Arch Ophthalmol 104(9):1329–1335

    CAS  PubMed  Google Scholar 

  • Fujita R, Bingham E, Forsythe P et al (1996) A recombination outside the BB deletion refines the location of the X linked retinitis pigmentosa locus RP3. Am J Hum Genet 59(1):152–158

    CAS  PubMed  Google Scholar 

  • Fujita R, Buraczynska M, Gieser L et al (1997) Analysis of the RPGR gene in 11 pedigrees with the retinitis pigmentosa type 3 genotype: paucity of mutations in the coding region but splice defects in two families. Am J Hum Genet 61(3):571–580

    Article  CAS  PubMed  Google Scholar 

  • Gieser L, Fujita R, Goring HH et al (1998) A novel locus (RP24) for X-linked retinitis pigmentosa maps to Xq26-27. Am J Hum Genet 63(5):1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Grayson C, Bartolini F, Chapple JP (2002) Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum Mol Genet 11(24):3065–3074

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle AJ, Thiselton DL, Van Maldergem L et al (1999) Mutations in the RP2 gene cause disease in 10% of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet 64(4):1210–1215

    Article  CAS  PubMed  Google Scholar 

  • Hardcastle AJ, Thiselton DL, Zito I et al (2000) Evidence for a new locus for X-linked retinitis pigmentosa (RP23). Invest Ophthalmol Vis Sci 41(8):2080–2086

    CAS  PubMed  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809

    Article  CAS  PubMed  Google Scholar 

  • He S, Parapuram SK, Hurd TW et al (2008) Retinitis Pigmentosa GTPase Regulator (RPGR) protein isoforms in mammalian retina: insights into X-linked Retinitis Pigmentosa and associated ciliopathies. Vision Res 48(3):366–376

    Article  CAS  PubMed  Google Scholar 

  • Heckenlively JR, Yoser SL, Friedman LH et al (1988) Clinical findings and common symptoms in retinitis pigmentosa. Am J Ophthalmol 105(5):504–511

    CAS  PubMed  Google Scholar 

  • Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7(5):311–322

    Article  CAS  PubMed  Google Scholar 

  • Hong DH, Li T (2002) Complex expression pattern of RPGR reveals a role for purine-rich exonic splicing enhancers. Invest Ophthalmol Vis Sci 43(11):3373–3382

    PubMed  Google Scholar 

  • Hong DH, Pawlyk BS, Adamian M et al (2004) Dominant, gain-of-function mutant produced by truncation of RPGR. Invest Ophthalmol Vis Sci 45(1):36–41

    Article  PubMed  Google Scholar 

  • Hong DH, Pawlyk BS, Adamian M et al (2005) A single, abbreviated RPGR-ORF15 variant reconstitutes RPGR function in vivo. Invest Ophthalmol Vis Sci 46(2):435–441

    Article  PubMed  Google Scholar 

  • Hong DH, Pawlyk BS, Shang J (2000) A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci USA 97(7):3649–3654

    Article  CAS  PubMed  Google Scholar 

  • Hong DH, Pawlyk B, Sokolov M et al (2003) RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 44(6):2413–2421

    Article  PubMed  Google Scholar 

  • Hong DH, Yue G, Adamian M et al (2001) Retinitis pigmentosa GTPase regulator (RPGRr)-interacting protein is stably associated with the photoreceptor ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem 276(15):12091–12099

    Article  CAS  PubMed  Google Scholar 

  • Hunter DG, Fishman GA, Kretzer FL (1988) Abnormal axonemes in X-linked retinitis pigmentosa. Arch Ophthalmol 106(3):362–368

    CAS  PubMed  Google Scholar 

  • Iannaccone A, Wang X, Jablonski MM et al (2004) Increasing evidence for syndromic phenotypes associated with RPGR mutations. Am J Ophthalmol 137(4):785–786 author reply 786

    PubMed  Google Scholar 

  • Insinna C, Besharse JC (2008) Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev Dyn 237(8):1982–1992

    Article  PubMed  Google Scholar 

  • Kahn RA, Volpicelli-Daley L, Bowzard B et al (2005) Arf family GTPases: roles in membrane traffic and microtubule dynamics. Biochem Soc Trans 33(Pt 6):1269–1272

    CAS  PubMed  Google Scholar 

  • Khanna H, Hurd TW, Lillo C et al (2005) RPGR-ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and microtubule transport proteins. J Biol Chem 280(39):33580–33587

    Article  CAS  PubMed  Google Scholar 

  • Kirschner R, Rosenberg T, Schultz-Heienbrok R et al (1999) RPGR transcription studies in mouse and human tissues reveal a retina-specific isoform that is disrupted in a patient with X-linked retinitis pigmentosa. Hum Mol Genet 8(8):1571–1578

    Article  CAS  PubMed  Google Scholar 

  • Koenekoop RK, Loyer M, Hand CK et al (2003) Novel RPGR mutations with distinct retinitis pigmentosa phenotypes in French-Canadian families. Am J Ophthalmol 136(4):678–687

    Article  CAS  PubMed  Google Scholar 

  • Kuhnel K, Veltel S, Schlichting I et al (2006) Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure 14(2):367–378

    Article  PubMed  Google Scholar 

  • Linari M, Ueffing M, Manson F et al (1999) The retinitis pigmentosa GTPase regulator, RPGR, interacts with the delta subunit of rod cyclic GMP phosphodiesterase. Proc Natl Acad Sci USA 96(4):1315–1320

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Tan G, Levenkova N et al (2007) The proteome of the mouse photoreceptor sensory cilium complex. Mol Cell Proteomics 6(8):1299–1317

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zuo J, Pierce EA (2004) The retinitis pigmentosa 1 protein is a photoreceptor microtubule-associated protein. J Neurosci 24(29):6427–6436

    Article  CAS  PubMed  Google Scholar 

  • Marszalek JR, Liu X, Roberts EA et al (2000) Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102(2):175–187

    Article  CAS  PubMed  Google Scholar 

  • Mavlyutov TA, Zhao H, Ferreira PA (2002) Species-specific subcellular localization of RPGR and RPGRIP isoforms: implications for the phenotypic variability of congenital retinopathies among species. Hum Mol Genet 11(16):1899–1907

    Article  CAS  PubMed  Google Scholar 

  • McGuire RE, Sullivan LS, Blanton SH et al (1995) X-linked dominant cone-rod degeneration: linkage mapping of a new locus for retinitis pigmentosa (RP 15) to Xp22.13–p22.11. Am J Hum Genet 57(1):87–94

    CAS  PubMed  Google Scholar 

  • Mears AJ, Gieser L, Yan D et al (1999) Protein-truncation mutations in the RP2 gene in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 64(3):897–900

    Article  CAS  PubMed  Google Scholar 

  • Meindl A, Dry K, Herrmann K et al (1996) A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 13(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Melamud A, Shen GQ, Chung D et al (2006) Mapping a new genetic locus for X linked retinitis pigmentosa to Xq28. J Med Genet 43(6):e27

    Article  CAS  PubMed  Google Scholar 

  • Moore A, Escudier E, Roger G et al (2006) RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 43(4):326–333

    Article  CAS  PubMed  Google Scholar 

  • Otto EA, Loeys B, Khanna H et al (2005) Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37(3):282–288

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Baker SA, Deane JA et al (2002) The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol 157(1):103–113

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LB, Veland IR, Schroder JM et al (2008) Assembly of primary cilia. Dev Dyn 237(8):1993–2006

    Article  CAS  PubMed  Google Scholar 

  • Renault L, Kuhlmann J, Henkel A et al (2001) Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105(2):245–255

    Article  CAS  PubMed  Google Scholar 

  • Roepman R, van Duijnhoven G, Rosenberg T et al (1996) Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Hum Mol Genet 5(7):1035–1041

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum JL, Cole DG, Diener DR (1999) Intraflagellar transport: the eyes have it. J Cell Biol 144(3):385–388

    Article  CAS  PubMed  Google Scholar 

  • Sayer JA, Otto EA, O’Toole J et al (2006) The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38(6):674–681

    Article  CAS  PubMed  Google Scholar 

  • Schwahn U, Lenzner S, Dong J (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19(4):327–332

    Article  CAS  PubMed  Google Scholar 

  • Sharon D, Bruns GA, McGee TL et al (2000) X-linked retinitis pigmentosa: mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Invest Ophthalmol Vis Sci 41(9):2712–2721

    CAS  PubMed  Google Scholar 

  • Sharon D, Sandberg MA, Rabe VW et al (2003) RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa. Am J Hum Genet 73(5):1131–1146

    Article  CAS  PubMed  Google Scholar 

  • Shu X, Black GC, Rice JM et al (2007) RPGR mutation analysis and disease: an update. Hum Mutat 28(4):322–328

    Article  CAS  PubMed  Google Scholar 

  • Shu X, Fry AM, Tulloch B et al (2005) RPGR ORF15 isoform co-localizes with RPGRIP1 at centrioles and basal bodies and interacts with nucleophosmin. Hum Mol Genet 14(9):1183–1197

    Article  CAS  PubMed  Google Scholar 

  • Sullivan LS, Daiger SP (1996) Inherited retinal degeneration: exceptional genetic and clinical heterogeneity. Mol Med Today 2(9):380–386

    Article  CAS  PubMed  Google Scholar 

  • van Dorp DB, Wright AF, Carothers AD et al (1992) A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities. Hum Genet 88(3):331–334

    Article  PubMed  Google Scholar 

  • Vervoort R, Lennon A, Bird AC et al (2000) Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25(4):462–466

    Article  CAS  PubMed  Google Scholar 

  • Williams DS (2002) Transport to the photoreceptor outer segment by myosin VIIa and kinesin II. Vision Res 42(4):455–462

    Article  CAS  PubMed  Google Scholar 

  • Wright AF, Bhattacharya SS, Aldred MA et al (1991) Genetic localisation of the RP2 type of X linked retinitis pigmentosa in a large kindred. J Med Genet 28(7):453–457

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Swain PK, Breuer D et al (1998) Biochemical characterization and subcellular localization of the mouse retinitis pigmentosa GTPase regulator (mRpgr). J Biol Chem 273(31):19656–19663

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Peachey NS, Moshfeghi DM et al (2002) Mutations in the RPGR gene cause X-linked cone dystrophy. Hum Mol Genet 11(5):605–611

    Article  CAS  PubMed  Google Scholar 

  • Young RW (1968) Passage of newly formed protein through the connecting cilium of retina rods in the frog. J Ultrastruct Res 23(5):462–473

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Acland GM, Wu WX et al (2002) Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration. Hum Mol Genet 11(9):993–1003

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu XH, Zhang K et al (2004) Photoreceptor cGMP phosphodiesterase delta subunit (PDEdelta) functions as a prenyl-binding protein. J Biol Chem 279(1):407–413

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hong DH, Pawlyk B et al (2003) The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc Natl Acad Sci USA 100(7):3965–3970

    Article  CAS  PubMed  Google Scholar 

  • Zito I, Downes SM, Patel RJ et al (2003) RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J Med Genet 40(8):609–615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the grants from the National Eye Institute (RO1-EY007961), Midwest Eye Banks and Transplantation Center, and by NEI/NIH intramural program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Khanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Murga-Zamalloa, C., Swaroop, A., Khanna, H. (2010). Multiprotein Complexes of Retinitis Pigmentosa GTPase Regulator (RPGR), a Ciliary Protein Mutated in X-Linked Retinitis Pigmentosa (XLRP). In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_13

Download citation

Publish with us

Policies and ethics